Empowering Human Decision-Making in AI Models: The Path to Trust and Transparency
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2653-2667, 2023, DOI:10.32604/iasc.2023.033493
Suspicious fall events are particularly significant hazards for the safety of patients and elders. Recently, suspicious fall event detection has become a robust research case in real-time monitoring. This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving backgrounds in an indoor environment; it is further proposed to use a deep learning method known as Long Short Term Memory (LSTM) by introducing visual attention-guided mechanism along with a bi-directional LSTM model. This method contributes essential information on the temporal and spatial locations of ‘suspicious fall’ events in learning the video frame in both… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 2383-2399, 2023, DOI:10.32604/csse.2023.037067
Abstract Prevailing linguistic steganalysis approaches focus on learning sensitive features to distinguish a particular category of steganographic texts from non-steganographic texts, by performing binary classification. While it remains an unsolved problem and poses a significant threat to the security of cyberspace when various categories of non-steganographic or steganographic texts coexist. In this paper, we propose a general linguistic steganalysis framework named LS-MTL, which introduces the idea of multi-task learning to deal with the classification of various categories of steganographic and non-steganographic texts. LS-MTL captures sensitive linguistic features from multiple related linguistic steganalysis tasks and can concurrently handle diverse tasks with a… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 19-34, 2023, DOI:10.32604/cmc.2023.033753
Abstract There are several ethical issues that have arisen in recent years due to the ubiquity of the Internet and the popularity of social media and community platforms. Among them is cyberbullying, which is defined as any violent intentional action that is repeatedly conducted by individuals or groups using online channels against victims who are not able to react effectively. An alarmingly high percentage of people, especially teenagers, have reported being cyberbullied in recent years. A variety of approaches have been developed to detect cyberbullying, but they require time-consuming feature extraction and selection processes. Moreover, no approach to date has examined… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.45, No.3, pp. 3005-3021, 2023, DOI:10.32604/csse.2023.031553
Abstract The COVID-19 pandemic has become one of the severe diseases in recent years. As it majorly affects the common livelihood of people across the universe, it is essential for administrators and healthcare professionals to be aware of the views of the community so as to monitor the severity of the spread of the outbreak. The public opinions are been shared enormously in microblogging media like twitter and is considered as one of the popular sources to collect public opinions in any topic like politics, sports, entertainment etc., This work presents a combination of Intensity Based Emotion Classification Convolution Neural Network… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2871-2888, 2023, DOI:10.32604/cmc.2023.032550
Abstract In recent years, Deep Learning models have become indispensable in several fields such as computer vision, automatic object recognition, and automatic natural language processing. The implementation of a robust and efficient handwritten text recognition system remains a challenge for the research community in this field, especially for the Arabic language, which, compared to other languages, has a dearth of published works. In this work, we presented an efficient and new system for offline Arabic handwritten text recognition. Our new approach is based on the combination of a Convolutional Neural Network (CNN) and a Bidirectional Long-Term Memory (BLSTM) followed by a… More >
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 543-560, 2023, DOI:10.32604/iasc.2023.030701
Abstract The evolution of bone marrow morphology is necessary in Acute Myeloid Leukemia (AML) prediction. It takes an enormous number of times to analyze with the standardization and inter-observer variability. Here, we proposed a novel AML detection model using a Deep Convolutional Neural Network (D-CNN). The proposed Faster R-CNN (Faster Region-Based CNN) models are trained with Morphological Dataset. The proposed Faster R-CNN model is trained using the augmented dataset. For overcoming the Imbalanced Data problem, data augmentation techniques are imposed. The Faster R-CNN performance was compared with existing transfer learning techniques. The results show that the Faster R-CNN performance was significant… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.45, No.1, pp. 293-309, 2023, DOI:10.32604/csse.2023.027986
Abstract Corona virus (COVID-19) is once in a life time calamity that has resulted in thousands of deaths and security concerns. People are using face masks on a regular basis to protect themselves and to help reduce corona virus transmission. During the on-going coronavirus outbreak, one of the major priorities for researchers is to discover effective solution. As important parts of the face are obscured, face identification and verification becomes exceedingly difficult. The suggested method is a transfer learning using MobileNet V2 based technology that uses deep feature such as feature extraction and deep learning model, to identify the problem of… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 873-894, 2022, DOI:10.32604/cmes.2022.022322
Abstract Pneumonia is part of the main diseases causing the death of children. It is generally diagnosed through chest X-ray images. With the development of Deep Learning (DL), the diagnosis of pneumonia based on DL has received extensive attention. However, due to the small difference between pneumonia and normal images, the performance of DL methods could be improved. This research proposes a new fine-grained Convolutional Neural Network (CNN) for children’s pneumonia diagnosis (FG-CPD). Firstly, the fine-grained CNN classification which can handle the slight difference in images is investigated. To obtain the raw images from the real-world chest X-ray data, the YOLOv4… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.44, No.3, pp. 2585-2601, 2023, DOI:10.32604/csse.2023.027512
Abstract In agricultural engineering, the main challenge is on methodologies used for disease detection. The manual methods depend on the experience of the personal. Due to large variation in environmental condition, disease diagnosis and classification becomes a challenging task. Apart from the disease, the leaves are affected by climate changes which is hard for the image processing method to discriminate the disease from the other background. In Cucurbita gourd family, the disease severity examination of leaf samples through computer vision, and deep learning methodologies have gained popularity in recent years. In this paper, a hybrid method based on Convolutional Neural Network… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4577-4593, 2022, DOI:10.32604/cmc.2022.031305
Abstract This research proposed an improved transfer-learning bird classification framework to achieve a more precise classification of Protected Indonesia Birds (PIB) which have been identified as the endangered bird species. The framework takes advantage of using the proposed sequence of Batch Normalization Dropout Fully-Connected (BNDFC) layers to enhance the baseline model of transfer learning. The main contribution of this work is the proposed sequence of BNDFC that can be applied to any Convolutional Neural Network (CNN) based model to improve the classification accuracy, especially for image-based species classification problems. The experiment results show that the proposed sequence of BNDFC layers outperform… More >