Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    A new semi-analytical solution of compound KdV-Burgers equation of fractional order

    Zuhur Alqahtani1, Ahmed Eissa Hagag2

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.39, No.4, pp. 1-15, 2023, DOI:10.23967/j.rimni.2023.10.003 - 25 October 2023

    Abstract This article introduces and illustrates a novel approximation to the compound KdV-Burgers equation. For such a challenge, the q-homotopy analysis transform technique (q-HATM) is a potent approach. The suggested procedure avoids the complexity seen in many other methods and provides an approximation that is extremely near to the exact solution. The uniqueness theorem and convergence analysis of the expected problem are explored with the aid of Banach's fixed-point theory. Through a difference in the fractional derivative, the normal frequency for the fractional solution to this issue changes. All of the discovered solutions are illustrated in More >

  • Open Access

    ARTICLE

    Analytical solution to fractional differential equation arising in thermodynamics

    Areej Almuneef1, Ahmed Eissa Hagag2

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.39, No.4, pp. 1-8, 2023, DOI:10.23967/j.rimni.2024.01.001 - 29 December 2023

    Abstract The analysis of nonlinear events related to physical phenomena is a popular issue in the modern-day. The essential purpose of this work is to discover a novel approximate solution to the fractional nonlinear Benjamin Bona Mahony Peregrine Burgers equation (BBMPB) utilizing the natural decomposition method (NDM) of fractional order. The suggested approach provides analytical solutions that are extremely near to the exact solution whereas obviating the complexities associated with many other approaches. The expected issue’s uniqueness theorem and convergence analysis are explored using Banach’s fixed-point theory. The reliability and accuracy of the recommended method were More >

  • Open Access

    ARTICLE

    Approximate solution of the fractional differential equation via the natural decomposition method

    Areej Almuneef1, Ahmed Eissa Hagag2

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.39, No.4, pp. 1-8, 2023, DOI:10.23967/j.rimni.2023.10.008 - 17 November 2023

    Abstract In today’s world, analyzing nonlinear occurrences related to physical phenomena is a hot topic. The main goal of this research is to use the natural decomposition method (NDM) of fractional order to find an approximate solution to the fractional clannish random walker’s parabolic (CRWP) equation. The proposed method gives approximate solutions that are exceptionally near the exact solution without the complication that numerous other techniques imply. Banach’s fixed-point theory is used to investigate the anticipated issue’s convergence analysis and uniqueness theorem. To ensure that the suggested technique is trustworthy and precise, numerical simulations were conducted. More >

  • Open Access

    PROCEEDINGS

    Three-Dimensional Numerical Simulation of Large-Scale LandslideGenerated Surging Waves with a GPU‒Accelerated Soil‒Water Coupled SPH Model

    Can Huang1,*, Xiaoliang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09824

    Abstract Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslidegenerated water waves,… More >

  • Open Access

    ARTICLE

    Computational Approximations for Real-World Application of Epidemic Model

    Shami A. M. Alsallami1, Ali Raza2,*, Mona Elmahi3, Muhammad Rafiq4, Shamas Bilal5, Nauman Ahmed6, Emad E. Mahmoud7

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1923-1939, 2022, DOI:10.32604/iasc.2022.024993 - 24 March 2022

    Abstract The real-world applications and analysis have a significant role in the scientific literature. For instance, mathematical modeling, computer graphics, camera, operating system, Java, disk encryption, web, streaming, and many more are the applications of real-world problems. In this case, we consider disease modeling and its computational treatment. Computational approximations have a significant role in different sciences such as behavioral, social, physical, and biological sciences. But the well-known techniques that are widely used in the literature have many problems. These methods are not consistent with the physical nature and even violate the actual behavior of the… More >

  • Open Access

    ARTICLE

    Structure Preserving Algorithm for Fractional Order Mathematical Model of COVID-19

    Zafar Iqbal1,2, Muhammad Aziz-ur Rehman1, Nauman Ahmed1,2, Ali Raza3,4, Muhammad Rafiq5, Ilyas Khan6,*, Kottakkaran Sooppy Nisar7

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2141-2157, 2022, DOI:10.32604/cmc.2022.013906 - 07 December 2021

    Abstract In this article, a brief biological structure and some basic properties of COVID-19 are described. A classical integer order model is modified and converted into a fractional order model with as order of the fractional derivative. Moreover, a valued structure preserving the numerical design, coined as Grunwald–Letnikov non-standard finite difference scheme, is developed for the fractional COVID-19 model. Taking into account the importance of the positivity and boundedness of the state variables, some productive results have been proved to ensure these essential features. Stability of the model at a corona free and a corona existing More >

  • Open Access

    ARTICLE

    Analysis of Pneumonia Model via Efficient Computing Techniques

    Kamaledin Abodayeh1, Ali Raza2,3,*, Muhammad Rafiq4, Muhammad Shoaib Arif5, Muhammad Naveed5, Zunir Zeb3, Syed Zaheer Abbas3, Kiran Shahzadi3, Sana Sarwar3, Qasim Naveed3, Badar Ul Zaman3, Muhammad Mohsin6

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6073-6088, 2022, DOI:10.32604/cmc.2022.020732 - 11 October 2021

    Abstract Pneumonia is a highly transmissible disease in children. According to the World Health Organization (WHO), the most affected regions include south Asia and sub-Saharan Africa. Worldwide, 15% of pediatric deaths can be attributed to pneumonia. Computing techniques have a significant role in science, engineering, and many other fields. In this study, we focused on the efficiency of numerical techniques via computer programs. We studied the dynamics of the pneumonia-like infections of epidemic models using numerical techniques. We discuss two types of analysis: dynamical and numerical. The dynamical analysis included positivity, boundedness, local stability, reproduction number, More >

  • Open Access

    ARTICLE

    Design of Computer Methods for the Solution of Cervical Cancer Epidemic Model

    Ali Raza1, Muhammad Rafiq2, Dalal Alrowaili3, Nauman Ahmed4, Ilyas Khan5,*, Kottakkaran Sooppy Nisar6, Muhammad Mohsin7

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1649-1666, 2022, DOI:10.32604/cmc.2022.019148 - 07 September 2021

    Abstract Nonlinear modelling has a significant role in different disciplines of sciences such as behavioral, social, physical and biological sciences. The structural properties are also needed for such types of disciplines, as dynamical consistency, positivity and boundedness are the major requirements of the models in these fields. One more thing, this type of nonlinear model has no explicit solutions. For the sake of comparison its computation will be done by using different computational techniques. Regrettably, the aforementioned structural properties have not been restored in the existing computational techniques in literature. Therefore, the construction of structural preserving… More >

  • Open Access

    ARTICLE

    A Pseudo-Spectral Scheme for Systems of Two-Point Boundary Value Problems with Left and Right Sided Fractional Derivatives and Related Integral Equations

    I. G. Ameen1, N. A. Elkot2, M. A. Zaky3,*, A. S. Hendy4,5, E. H. Doha2

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 21-41, 2021, DOI:10.32604/cmes.2021.015310 - 28 June 2021

    Abstract We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left- and right-sided fractional derivatives. The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations. Then, a Legendre-based spectral collocation method is developed for solving the transformed system. Therefore, we can make good use of the advantages of the Gauss quadrature rule. We present the construction and analysis of the collocation method. These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding More >

  • Open Access

    ARTICLE

    Spectral Solutions of Linear and Nonlinear BVPs Using Certain Jacobi Polynomials Generalizing Third- and Fourth-Kinds of Chebyshev Polynomials

    W. M. Abd-Elhameed1,2,*, Asmaa M. Alkenedri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 955-989, 2021, DOI:10.32604/cmes.2021.013603 - 19 February 2021

    Abstract This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems. For this purpose, we establish new explicit formulas for the high-order derivatives of certain two classes of Jacobi polynomials in terms of their corresponding Jacobi polynomials. These two classes generalize the two celebrated non-symmetric classes of polynomials, namely, Chebyshev polynomials of third- and fourth-kinds. The idea of the derivation of such formulas is essentially based on making use of the power series representations and inversion formulas of these classes of polynomials. The derived formulas More >

Displaying 1-10 on page 1 of 22. Per Page