Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Effects of docosahexaenoic acid or arachidonic acid supplementation on the behavior of cardiomyocytes derived from human pluripotent stem cells

    MIZUNA YANO1, KOTA HIROI1, TETSUYA YUASA1, KENJI INOUE1, OSAMU YAMAMOTO1, TAKAO NAKAMURA2, DAISUKE SATO1, ZHONGGANG FENG1,*

    BIOCELL, Vol.47, No.5, pp. 1095-1106, 2023, DOI:10.32604/biocell.2023.028186 - 10 April 2023

    Abstract Background: Human heart changes its energetic substrates from lactate and glucose to fatty acids during the neonatal period. Noticing the lack of fatty acids in media for the culture of cardiomyocytes derived from human pluripotent stem cells (hiPS-CM), researchers have supplemented mixtures of fatty acids to hiPS-CM and reported the enhancement in the maturation of hiPS-CM. In our previous studies, we separately supplemented two polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) or arachidonic acid (AA), to rat fetal cardiomyocytes and found that the supplementations upregulated the expressions of mRNAs for cardiomyocyte differentiation, fatty acid metabolism, and… More >

  • Open Access

    ABSTRACT

    Role of Myocardial Contractions on Coronary Vasoactivity

    Xiao Lu1,*, Ghassan Kassab1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 84-86, 2019, DOI:10.32604/mcb.2019.07089

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    On the Origins of the Universal Dynamics of Endogenous Granules in Mammalian Cells

    Siva A. Vanapalli∗,†, Yixuan Li, Frieder Mugele, Michel H. G. Duits

    Molecular & Cellular Biomechanics, Vol.6, No.4, pp. 191-202, 2009, DOI:10.3970/mcb.2009.006.191

    Abstract Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics - both of which are crucial for the interpretation of the results from MPTM technique - are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive… More >

  • Open Access

    ARTICLE

    Strain-induced Orientation Response of Endothelial Cells: Effect of Substratum Adhesiveness and Actin-myosin Contractile Level

    Hai Ngu*, Lan Lu*, Sara J. Oswald*, Sarah Davis*, Sumona Nag*, Frank C-P Yin

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 69-82, 2008, DOI:10.3970/mcb.2008.005.069

    Abstract Endothelial cells subjected to cyclic stretching change orientation so as to be aligned perpendicular to the direction of applied strain in a magnitude and time-dependent manner. Although this type of response is not the same as motility, it could be governed by motility-related factors such as substratum adhesiveness and actin-myosin contractile level. To examine this possibility, human aortic endothelial cells (HAEC) were uniaxially, cyclically stretched on silicone rubber membranes coated with various concentrations of fibronectin, collagen type IV and laminin to produce differing amounts of adhesiveness (measured using a radial flow detachment assay). Cells were… More >

  • Open Access

    ARTICLE

    Airway Smooth Muscle Proliferation and Mechanics: Effects of AMP Kinase Agonists

    Anat Ratnovsky∗,†, Matthew Mellema*, Steven S. An∗,‡, Jeffrey J. Fredberg*, Stephanie A. Shore*

    Molecular & Cellular Biomechanics, Vol.4, No.3, pp. 143-158, 2007, DOI:10.3970/mcb.2007.004.143

    Abstract Obesity is a risk factor for asthma. The purpose of this study was to determine whether metformin, an agent used in the treatment of an obesity-related condition (type II diabetes), might have therapeutic potential for modifying the effects of obesity on airway smooth muscle (ASM) function. Metformin acts via activation of AMP-activated protein kinase (AMPK), a cellular sensor of energy status. In cultured murine ASM cells, metformin (0.2--2 mM) caused a dose-dependent inhibition of cell proliferation induced by PDGF (10-8 M) and serotonin (10-4 M). Another AMPK activator, 5-aminoimidazole-4-carboxamide-1-ß-D-riboruranoside (AICAR), also inhibited PDGF-induced proliferation. Furthermore, cells More >

  • Open Access

    ARTICLE

    A Mathematical Model of Cell Reorientation in Response to Substrate Stretching

    Konstantinos A. Lazopoulos1, Dimitrije Stamenović2

    Molecular & Cellular Biomechanics, Vol.3, No.1, pp. 43-48, 2006, DOI:10.3970/mcb.2006.003.043

    Abstract It is well documented that in response to substrate stretching adhering cells alter their orientation. Generally, the cells reorient away from the direction of the maximum substrate strain, depending upon the magnitude of the substrate strain and the state of cell contractility. Theoretical models from the literature can describe only some aspects of this phenomenon. In the present study, we developed a more comprehensive mathematical model of cell reorientation than the current models. Using the framework of theory of non-linear elasticity, we found that the problem of cell reorientation was a stability problem, with the More >

  • Open Access

    ARTICLE

    Systolic Modeling of the Left Ventricle as a Mechatronic System: Determination of Myocardial Fiber's Sarcomere Contractile Characteristics and New Performance Indices

    Dhanjoo N. Ghista1,2, Liang Zhong2, Leok P.Chua2, Eddie Y-K Ng2, Soo T.Lim3, Ru S. Tan3, TerranceS-J Chua3

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 217-234, 2005, DOI:10.3970/mcb.2005.002.217

    Abstract Background: In this paper, the left ventricle (LV) is modeled as a cylinder with myocardial fibers located helically within its wall. A fiber is modeled into myocardial structural units (MSUs); the core entity of each MSU is the sarcomeric contractile element. The relationship between the sarcomere unit's contractile force and shortening velocity is expressed in terms of the LV model's wall stress and deformation, and hence in terms of the monitored LV pressure and volume. Then, the LV systolic performance is investigated in terms of a mechatronic (excitation-contraction) model of the sarcomere unit located within the… More >

Displaying 1-10 on page 1 of 7. Per Page