Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Secure Content Based Image Retrieval Scheme Based on Deep Hashing and Searchable Encryption

    Zhen Wang, Qiu-yu Zhang*, Ling-tao Meng, Yi-lin Liu

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6161-6184, 2023, DOI:10.32604/cmc.2023.037134 - 29 April 2023

    Abstract To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security, retrieval efficiency, and retrieval accuracy. This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure, searchable encryption scheme. First, a deep learning framework based on residual network and transfer learning model is designed to extract more representative image deep features. Secondly, the central similarity is used to quantify and construct the deep hash sequence of features. The Paillier homomorphic encryption encrypts the deep hash sequence… More >

  • Open Access

    ARTICLE

    An Efficient Deep Learning-based Content-based Image Retrieval Framework

    M. Sivakumar1,*, N. M. Saravana Kumar2, N. Karthikeyan1

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 683-700, 2022, DOI:10.32604/csse.2022.021459 - 20 April 2022

    Abstract The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology. Image retrieval has become one of the vital tools in image processing applications. Content-Based Image Retrieval (CBIR) has been widely used in varied applications. But, the results produced by the usage of a single image feature are not satisfactory. So, multiple image features are used very often for attaining better results. But, fast and effective searching for relevant images from a database becomes a challenging task. In the previous existing system, the CBIR has used the… More >

  • Open Access

    ARTICLE

    Enhancing Scalability of Image Retrieval Using Visual Fusion of Feature Descriptors

    S. Balammal@Geetha*, R. Muthukkumar, V. Seenivasagam

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1737-1752, 2022, DOI:10.32604/iasc.2022.018822 - 09 October 2021

    Abstract Content-Based Image Retrieval (CBIR) is an approach of retrieving similar images from a large image database. Recently CBIR poses new challenges in semantic categorization of the images. Different feature extraction technique have been proposed to overcome the semantic breach problems, however these methods suffer from several shortcomings. This paper contributes an image retrieval system to extract the local features based on the fusion of scale-invariant feature transform (SIFT) and KAZE. The strength of local feature descriptor SIFT complements global feature descriptor KAZE. SIFT concentrates on the complete region of an image using high fine points… More >

  • Open Access

    ARTICLE

    An Efficient Content-Based Image Retrieval System Using kNN and Fuzzy Mathematical Algorithm

    Chunjing Wang*, Li Liu, Yanyan Tan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1061-1083, 2020, DOI:10.32604/cmes.2020.010198 - 21 August 2020

    Abstract The implementation of content-based image retrieval (CBIR) mainly depends on two key technologies: image feature extraction and image feature matching. In this paper, we extract the color features based on Global Color Histogram (GCH) and texture features based on Gray Level Co-occurrence Matrix (GLCM). In order to obtain the effective and representative features of the image, we adopt the fuzzy mathematical algorithm in the process of color feature extraction and texture feature extraction respectively. And we combine the fuzzy color feature vector with the fuzzy texture feature vector to form the comprehensive fuzzy feature vector… More >

Displaying 1-10 on page 1 of 4. Per Page