Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (251)
  • Open Access

    ARTICLE

    Bending Stiffness of Concrete-Filled Steel Tube and Its Influence on Concrete Placement Timing of Composite Beam-String Structure

    Zhenyu Zhang1, Quan Jin1, Haitao Zhang1, Zhao Liu1, Yuyang Wu2, Longfei Zhang2, Renzhang Yan2,*

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 167-191, 2025, DOI:10.32604/sdhm.2024.053190 - 15 November 2024

    Abstract When the upper chord beam of the beam-string structure (BSS) is made of concrete-filled steel tube (CFST), its overall stiffness will change greatly with the construction of concrete placement, which will have an impact on the design of the tensioning plans and selection of control measures for the BSS. In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during construction, the influence of some factors such as height-width ratio, wall thickness of steel tube, elasticity modulus of concrete, and friction coefficient on More >

  • Open Access

    ARTICLE

    Discrete Numerical Study on Type II Fracture of Partially Detached Concrete Panels in Cold Region

    Huayi Zhang1, Maobin Song2, Lei Shen1,*, Nizar Faisal Alkayem1, Maosen Cao3

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 55-75, 2025, DOI:10.32604/sdhm.2024.052869 - 15 November 2024

    Abstract The concrete panel of earth-rock dams in cold regions tends to crack due to the combination effect of non-uniform foundation settlement, ice expansion loads, and freeze-thaw damage. In this work, simulations are designed to investigate the effects of freeze-thaw damage degrees on the fracture behavior caused by the partial detachment and ice expansion loads on concrete panels. Results show that the range of detached panels and freeze-thaw damage degree are the dominant factors that affect the overall load-bearing capacity of the panel and the failure cracking modes, whereas the panel slope is a secondary factor. More >

  • Open Access

    ARTICLE

    Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment

    Zhao-Jun Zhang1, Wen-Wei Wang1,2,*, Jing-Shui Zhen1, Bo-Cheng Li1, De-Cheng Cai1, Yang-Yang Du1, Hui Huang2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 105-123, 2025, DOI:10.32604/sdhm.2024.052506 - 15 November 2024

    Abstract This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer (GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone. An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs, and a calculation method based on the conjugate beam method was proposed. The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens. Two methods, epoxy resin bonding, and stud connection, were used to connect the composite… More >

  • Open Access

    ARTICLE

    The Influence of Chemical Admixtures on the Fluidity, Viscosity and Rheological Properties of Ultra-High Performance Concrete

    Jin Yang1,2, Hailong Zhao1, Jingyi Zeng1, Ying Su1,2, Mengdi Zhu1, Xingyang He1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2163-2181, 2024, DOI:10.32604/fdmp.2024.055448 - 23 September 2024

    Abstract To achieve higher strength and better durability, ultra-high performance concrete (UHPC) typically employs a relatively small water-binder ratio. However, this generally leads to an undesired increase in the paste viscosity. In this study, the effects of liquid and powder polycarboxylate superplasticizers (PCE) on UHPC are compared and critically discussed. Moreover, the following influential factors are considered: air-entraining agents (AE), slump retaining agents (SA), and defoaming agents (DF) and the resulting flow characteristics, mechanical properties, and hydration properties are evaluated assuming UHPC containing 8‰ powder PCE (PCE-based UHPC). It is found that the spread diameter of… More >

  • Open Access

    ARTICLE

    Effect of Shrinkage Reducing Agent and Steel Fiber on the Fluidity and Cracking Performance of Ultra-High Performance Concrete

    Yong Wan1, Li Li1, Jiaxin Zou1, Hucheng Xiao2, Mengdi Zhu2, Ying Su2, Jin Yang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 1941-1956, 2024, DOI:10.32604/fdmp.2024.053910 - 23 August 2024

    Abstract Due to the low water-cement ratio of ultra-high-performance concrete (UHPC), fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete. In this study, the effects of different types of cementitious materials, chemical shrinkage-reducing agents (SRA) and steel fiber (SF) were assessed. Compared with M2-UHPC and M3-UHPC, M1-UHPC was found to have better fluidity and shrinkage cracking performance. Moreover, different SRA incorporation methods, dosage and different SF types and aspect ratios were implemented. The incorporation of SRA and SF led to a decrease in the fluidity of UHPC. SRA More >

  • Open Access

    ARTICLE

    Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete

    Mohamed Abdel-Mongy1, Mudassir Iqbal2, M. Farag3, Ahmed. M. Yosri1,*, Fahad Alsharari1, Saif Eldeen A. S. Yousef4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 525-543, 2024, DOI:10.32604/cmes.2024.052505 - 20 August 2024

    Abstract Alkali-activated materials/geopolymer (AAMs), due to their low carbon emission content, have been the focus of recent studies on ecological concrete. In terms of performance, fly ash and slag are preferred materials for precursors for developing a one-part geopolymer. However, determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported. Therefore, in this study, machine learning methods such as artificial neural networks (ANN) and gene expression programming (GEP) models were developed using MATLAB and GeneXprotools, respectively, for the prediction of compressive strength under variable input materials and content… More >

  • Open Access

    ARTICLE

    The Influence of CO Cured Manganese Slag on the Performance and Mechanical Properties of Ultra-High Performance Concrete

    Ligai Bai, Guihua Yang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1717-1730, 2024, DOI:10.32604/fdmp.2024.051506 - 06 August 2024

    Abstract The presence of toxic elements in manganese slag (MSG) poses a threat to the environment due to potential pollution. Utilizing CO curing on MS offers a promising approach to immobilize toxic substances within this material, thereby mitigating their release into the natural surroundings. This study investigates the impact of CO cured MS on various rheological parameters, including slump flow, plastic viscosity (η), and yield shear stress (τ). Additionally, it assesses flexural and compressive strengths (f and f), drying shrinkage rates (DSR), durability indicators (chloride ion migration coefficient (CMC), carbonization depth (CD)), and the leaching behavior of heavy… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Fiber Reinforced Polymer-Confined Concrete under Cyclic Compression Using Cohesive Zone Models

    Mingxu Zhang1, Mingliang Wang2, Wei Zhang3,*

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 599-622, 2024, DOI:10.32604/sdhm.2024.051949 - 19 July 2024

    Abstract This paper examines the mechanical behavior of fiber reinforced polymer (FRP)-confined concrete under cyclic compression using the 3D cohesive zone model (CZM). A numerical modeling method was developed, employing zero-thickness cohesive elements to represent the stress-displacement relationship of concrete potential fracture surfaces and FRP-concrete interfaces. Additionally, mixed-mode damage plastic constitutive models were proposed for the concrete potential fracture surfaces and FRP-concrete interface, considering interfacial friction. Furthermore, an anisotropic plastic constitutive model was developed for the FRP composite jacket. The CZM model proposed in this study was validated using experimental data from plain concrete and large More >

  • Open Access

    ARTICLE

    Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer

    Heng Zhang1,2, Chao Su2,*, Xiaohu Chen1, Zhizhong Song1, Weijie Zhan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2977-3000, 2024, DOI:10.32604/cmes.2024.047972 - 08 July 2024

    Abstract Temperature-induced cracking during the construction of mass concrete is a significant concern. Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment. The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary. However, in the case of tubular concrete structures, where air inlet and outlet are relatively limited, the internal air temperature does not dissipate promptly to the external environment as it rises. To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces… More >

  • Open Access

    ARTICLE

    Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology

    Safwan Al-sayed, Xi Wang, Yijiang Peng*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4169-4195, 2024, DOI:10.32604/cmc.2024.048916 - 20 June 2024

    Abstract The mechanical properties and failure mechanism of lightweight aggregate concrete (LWAC) is a hot topic in the engineering field, and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field. In this study, the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete. Through the information extraction and processing of the section image of actual light aggregate concrete specimens, the mesostructural model of light aggregate concrete with real aggregate characteristics is established. The numerical simulation of uniaxial tensile test, uniaxial compression… More >

Displaying 1-10 on page 1 of 251. Per Page