Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (206)
  • Open Access

    ARTICLE

    Experimental Study of Thermal-Hydraulic-Mechanical Coupling Behavior of High-Performance Concrete

    Wei Chen1,*, Wenhao Zhao1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2417-2430, 2023, DOI:10.32604/fdmp.2023.030028

    Abstract The design of an underground nuclear waste disposal requires a full characterization of concrete under various thermo-hydro-mechanical-chemical conditions. This experimental work studied the characterization of coupled thermo-hydro-mechanical effects using concretes made with cement CEM I or CEM V/A (according to European norms). Uniaxial and triaxial compression under 5 MPa confining pressure tests were performed under three different temperatures (T = 20°C, 50°C, and 80°C). The two concretes were dried under relative humidity (RH) to obtain a partially saturated state of approximately 70%. The results showed that the effects of water saturation and confining pressure are more important than that of… More >

  • Open Access

    ARTICLE

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

    Zhiyong Yang1, Jiacheng Zhang1, Henglin Xiao1,2, Zhi Chen1,*, Tian Bao1, Yin Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2267-2288, 2023, DOI:10.32604/fdmp.2023.028652

    Abstract The use of carbon-fiber heating cables (CFHC) to achieve effective melting of snow and ice deposited on roads is a method used worldwide. In this study, tensile and compressive tests have been conducted to analyze the mechanical properties of the CFHC and assess whether the maximum tensile and compressive strengths can meet the pavement design specifications. In order to study the aging produced by multiple cycles of heating and cooling, in particular, the CFHC was repeatedly heated in a cold chamber with an ambient temperature ranging between −20°C and +40°C. Moreover, to evaluate how the strength of the pavement is… More > Graphic Abstract

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

  • Open Access

    ARTICLE

    Effect of High Temperature Curing on the Frost Resistance of Recycled Aggregate Concrete and the Physical Properties of Second-Generation Recycled Coarse Aggregate under Freeze-Thaw Cycles

    Xintong Chen, Pinghua Zhu*, Xiancui Yan, Lei Yang, Huayu Wang

    Journal of Renewable Materials, Vol.11, No.6, pp. 2953-2967, 2023, DOI:10.32604/jrm.2023.027140

    Abstract With the emphasis on environmental issues, the recycling of waste concrete, even recycled concrete, has become a hot spot in the field of architecture. But the repeated recycling of waste concrete used in harsh environments is still a complex problem. This paper discusses the durability and recyclability of recycled aggregate concrete (RAC) as a prefabricated material in the harsh environment, the effect of high-temperature curing (60°C, 80°C, and 100°C) on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate (RCA2) of RAC after 300 freeze-thaw cycles were studied. The frost resistance of RAC was… More >

  • Open Access

    ARTICLE

    Influence of Recycling Waste Glass as Fine Aggregate on the Concrete Properties

    Rafal A. Hadi1,*, Suhad M. Abd2, Hadee Mohammed Najm3, Shaker Qaidi4,5,*, Moutaz Mustafa A. Eldirderi6, Khaled Mohamed Khedher7,8

    Journal of Renewable Materials, Vol.11, No.6, pp. 2925-2940, 2023, DOI:10.32604/jrm.2023.025558

    Abstract Recent years have witnessed an increase in the quantity of waste glass (WG) across the globe. Replacing the fine aggregate with WG is one of the steps toward preserving the natural resources of the environment and creating low-cost concrete. The present study is concerned with replacing fine aggregates with glass powder (GP) at (0%, 15%, 30%, and 50%). It has studied the fresh and hardened properties (compressive strength, tensile strength, hardened density, and slump) for all the mentioned percent replacements. The findings have shown that all mixtures containing GP gave acceptable slump results within the design limits (2–5 cm) according… More >

  • Open Access

    ARTICLE

    Influence of High-Robustness Polycarboxylate Superplasticizer on the Performances of Concrete Incorporating Fly Ash and Manufactured Sand

    Panpan Cao1,2, Xiulin Huang1,3,*, Shenxu Bao4, Jin Yang5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2041-2051, 2023, DOI:10.32604/fdmp.2023.027399

    Abstract Using ethylene glycol monovinyl polyoxyethylene ether, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and acrylic acid as the main synthetic monomers, a high robustness polycarboxylate superplasticizer was prepared. The effects of initial temperature, ratio of acid to ether, amount of chain transfer agent, and synthesis process on the properties of the superplasticizer were studied. The molecular structure was characterized by GPC (Gel Permeation Chromatography) and IR (Infrared Spectrometer). As shown by the results, when the initial reaction temperature is 15°C, the ratio of acid to ether is 3.4:1 and the acrylic acid pre-neutralization is 15%, The AMPS substitution is 10%, the amount of… More > Graphic Abstract

    Influence of High-Robustness Polycarboxylate Superplasticizer on the Performances of Concrete Incorporating Fly Ash and Manufactured Sand

  • Open Access

    ARTICLE

    Water Stability Improvement of Acid Fine Aggregate-Based Asphalt Concrete

    Yihan Sun1,2, Lihua Chu3, Yudong Cheng4,*, Fengxia Chi1,2, Chenchen Zhang1,2, Pengcheng Sun1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2171-2180, 2023, DOI:10.32604/fdmp.2023.026892

    Abstract In general, acid aggregates are not used in combination with asphalt concrete because of their poor compatibility with the asphalt binder, which typically results in a scarce water stability of the concrete. In the present study, the feasibility of a new approach based on the combination of acid granite fine aggregate with alkaline limestone coarse aggregate and Portland cement filler has been assessed. The mineral and chemical compositions of these three materials have first been analyzed and compared. Then, the effect of different amounts of Portland cement (0%, 25%, 50%, 75% and 100% of the total filler by weight) on… More >

  • Open Access

    ARTICLE

    Analysis of a Composite Admixture Based on Ready-Mixed Concrete Waste Residuals

    Jinfa Jiang1, Long Xiong2, Ming Bao2, Zihan Zhou2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 1983-1995, 2023, DOI:10.32604/fdmp.2023.026023

    Abstract Reasonable treatment and utilization of waste residuals discharged during the production of ready-mixed concrete is an important problem in the cement industry. In this study, a composite admixture was prepared by using ready-mixed concrete waste residuals, furnace slag, and water granulated slag. The grinding characteristics of such material were investigated. Moreover, the effect of such admixture on cement hydration and pore structure was analyzed by X-ray diffraction, thermogravimetric-differential scanning calorimetry, scanning electron microcopy and mercury intrusion porosimetry. As shown by the results: The grinding characteristics of the waste residuals can be improved significantly by mixing them with furnace slag and… More > Graphic Abstract

    Analysis of a Composite Admixture Based on Ready-Mixed Concrete Waste Residuals

  • Open Access

    ARTICLE

    On the Use of Recycled Asphalt and Trinidad Lake Asphalt (TLA) for the Preparation of High Modulus Asphalt Concrete

    Chao Li1,*, Guodong Zeng1, Yang Fang1, Hongming Huang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1939-1950, 2023, DOI:10.32604/fdmp.2023.026103

    Abstract Rutting of asphalt pavement occurs earlier and is more serious under the increasingly heavy traffic load conditions that can be found in subtropical monsoon climate regions. High modulus asphalt concrete (HMAC) with excellent anti-rutting and anti-fatigue properties is generally used to mitigate this issue. Given the relatively high cost of the additives used in this type of asphalt, in this study the feasibility of using recycled asphalt mixture (RAP) and Trinidad lake asphalt (TLA) for the preparation of HMAC is considered. The mineral composition of the RAP is first analyzed, then the TLA modified asphalt with different levels of RAP… More >

  • Open Access

    ARTICLE

    Detection of Frost-Resistance Property of Large-Size Concrete Based on Impact-Echo Method

    Qi Feng1, Zhengyue Ren2, Dan Wang3,*

    Structural Durability & Health Monitoring, Vol.17, No.1, pp. 71-88, 2023, DOI:10.32604/sdhm.2023.024912

    Abstract The dynamic elasticity modulus (Ed) is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete. Samples with a specific size is required when the transverse resonance method was used to detect the Ed, resulting in a limitation for field tests. The impact-echo method can make up defects of traditional detection methods for frost-resistance testing, such as the evaluation via the loss of mass or strength. The feasibility of the impact-echo method to obtain the relative Ed is explored to detect the frost-resistance property of large-volume hydraulic concretes on site. Results show that the… More >

  • Open Access

    ARTICLE

    Preparation of Phase Change Concrete Using Environmentally Friendly Materials and Its Performance Study

    Yunfeng Li1,#, Cheng Zhao2,#, Qianqian Lu2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2417-2431, 2023, DOI:10.32604/jrm.2023.025443

    Abstract The control of carbon emissions and energy conservation, and environmental protection are hot spots of global concern. In this paper, phase change paraffin wax is applied to porous materials for adsorption and storage, and nature’s eco-friendly materials are selected as the porous matrix to propose an eco-friendly phase change concrete using eco-friendly materials as raw materials. It was obtained that the strength of the phase change concrete utilizing environmentally friendly materials was 25.4% to 36.8% lower than that of ordinary concrete, while some of the phase change light aggregates were found to produce slip damage with the cement paste in… More >

Displaying 1-10 on page 1 of 206. Per Page  

Share Link