Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    Automated Angle Detection for Industrial Production Lines Using Combined Image Processing Techniques

    Pawat Chunhachatrachai1,*, Chyi-Yeu Lin1,2

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 599-618, 2024, DOI:10.32604/iasc.2024.055385 - 06 September 2024

    Abstract Angle detection is a crucial aspect of industrial automation, ensuring precise alignment and orientation of components in manufacturing processes. Despite the widespread application of computer vision in industrial settings, angle detection remains an underexplored domain, with limited integration into production lines. This paper addresses the need for automated angle detection in industrial environments by presenting a methodology that eliminates training time and higher computation cost on Graphics Processing Unit (GPU) from machine learning in computer vision (e.g., Convolutional Neural Networks (CNN)). Our approach leverages advanced image processing techniques and a strategic combination of algorithms, including More >

  • Open Access

    REVIEW

    A Systematic Review of Computer Vision Techniques for Quality Control in End-of-Line Visual Inspection of Antenna Parts

    Zia Ullah1,2,*, Lin Qi1, E. J. Solteiro Pires2, Arsénio Reis2, Ricardo Rodrigues Nunes2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2387-2421, 2024, DOI:10.32604/cmc.2024.047572 - 15 August 2024

    Abstract The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity. Antenna defects, ranging from manufacturing imperfections to environmental wear, pose significant challenges to the reliability and performance of communication systems. This review paper navigates the landscape of antenna defect detection, emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection. This review paper serves as a valuable resource for researchers, engineers, and practitioners engaged in the design and maintenance of communication systems. The insights presented here pave the way… More >

  • Open Access

    ARTICLE

    Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+ Deep Learning Model

    Wanrun Li1,2,3,*, Wenhai Zhao1, Tongtong Wang1, Yongfeng Du1,2,3

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 553-575, 2024, DOI:10.32604/sdhm.2024.050751 - 19 July 2024

    Abstract The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage, impacting the aerodynamic performance of the blades. To address the challenge of detecting and quantifying surface defects on wind turbine blades, a blade surface defect detection and quantification method based on an improved Deeplabv3+ deep learning model is proposed. Firstly, an improved method for wind turbine blade surface defect detection, utilizing Mobilenetv2 as the backbone feature extraction network, is proposed based on an original Deeplabv3+ deep learning model to address the issue of limited robustness. Secondly, through integrating the concept of… More > Graphic Abstract

    Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+ Deep Learning Model

  • Open Access

    ARTICLE

    GAN-DIRNet: A Novel Deformable Image Registration Approach for Multimodal Histological Images

    Haiyue Li1, Jing Xie2, Jing Ke3, Ye Yuan1, Xiaoyong Pan1, Hongyi Xin4, Hongbin Shen1,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 487-506, 2024, DOI:10.32604/cmc.2024.049640 - 18 July 2024

    Abstract Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue. Convolutional neural network (CNN) and generative adversarial network (GAN) are pivotal in medical image registration. However, existing methods often struggle with severe interference and deformation, as seen in histological images of conditions like Cushing’s disease. We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator in GAN. In this study, we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration. To… More >

  • Open Access

    ARTICLE

    Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions

    Adéla Hamplová1,*, Alexey Lyavdansky2,*, Tomáš Novák1, Ondřej Svojše1, David Franc1, Arnošt Veselý1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2869-2889, 2024, DOI:10.32604/cmes.2024.050791 - 08 July 2024

    Abstract This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions, employing two state-of-the-art deep learning algorithms, namely YOLOv8 and Roboflow 3.0. The goal is to contribute to the preservation and understanding of historical texts, showcasing the potential of modern deep learning methods in archaeological research. Our research culminates in several key findings and scientific contributions. We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context. We also created… More >

  • Open Access

    ARTICLE

    BDPartNet: Feature Decoupling and Reconstruction Fusion Network for Infrared and Visible Image

    Xuejie Wang1, Jianxun Zhang1,*, Ye Tao2, Xiaoli Yuan1, Yifan Guo1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4621-4639, 2024, DOI:10.32604/cmc.2024.051556 - 20 June 2024

    Abstract While single-modal visible light images or infrared images provide limited information, infrared light captures significant thermal radiation data, whereas visible light excels in presenting detailed texture information. Combining images obtained from both modalities allows for leveraging their respective strengths and mitigating individual limitations, resulting in high-quality images with enhanced contrast and rich texture details. Such capabilities hold promising applications in advanced visual tasks including target detection, instance segmentation, military surveillance, pedestrian detection, among others. This paper introduces a novel approach, a dual-branch decomposition fusion network based on AutoEncoder (AE), which decomposes multi-modal features into intensity… More >

  • Open Access

    ARTICLE

    Braille Character Segmentation Algorithm Based on Gaussian Diffusion

    Zezheng Meng, Zefeng Cai, Jie Feng*, Hanjie Ma, Haixiang Zhang, Shaohua Li

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1481-1496, 2024, DOI:10.32604/cmc.2024.048002 - 25 April 2024

    Abstract Optical braille recognition methods typically employ existing target detection models or segmentation models for the direct detection and recognition of braille characters in original braille images. However, these methods need improvement in accuracy and generalizability, especially in densely dotted braille image environments. This paper presents a two-stage braille recognition framework. The first stage is a braille dot detection algorithm based on Gaussian diffusion, targeting Gaussian heatmaps generated by the convex dots in braille images. This is applied to the detection of convex dots in double-sided braille, achieving high accuracy in determining the central coordinates of More >

  • Open Access

    ARTICLE

    Detection of Student Engagement in E-Learning Environments Using EfficientnetV2-L Together with RNN-Based Models

    Farhad Mortezapour Shiri1,*, Ehsan Ahmadi2, Mohammadreza Rezaee1, Thinagaran Perumal1

    Journal on Artificial Intelligence, Vol.6, pp. 85-103, 2024, DOI:10.32604/jai.2024.048911 - 24 April 2024

    Abstract Automatic detection of student engagement levels from videos, which is a spatio-temporal classification problem is crucial for enhancing the quality of online education. This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos. The evaluation of these models utilizes the DAiSEE dataset, a public repository capturing student affective states in e-learning scenarios. The initial model integrates EfficientNetV2-L with Gated Recurrent Unit (GRU) and attains an accuracy of 61.45%. Subsequently, the second model combines EfficientNetV2-L with bidirectional GRU (Bi-GRU), yielding More >

  • Open Access

    ARTICLE

    Multi-Branch High-Dimensional Guided Transformer-Based 3D Human Posture Estimation

    Xianhua Li1,2,*, Haohao Yu1, Shuoyu Tian1, Fengtao Lin3, Usama Masood1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3551-3564, 2024, DOI:10.32604/cmc.2024.047336 - 26 March 2024

    Abstract The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional (3D) method that takes into account self-occlusion, badly posedness, and a lack of depth data in the per-frame 3D posture estimation from two-dimensional (2D) mapping to 3D mapping. Firstly, by examining the relationship between the movements of different bones in the human body, four virtual skeletons are proposed to enhance the cyclic constraints of limb joints. Then, multiple parameters describing the skeleton are fused and projected into a high-dimensional space. Utilizing a multi-branch network, motion features between bones and overall motion More >

  • Open Access

    ARTICLE

    A Novel 6G Scalable Blockchain Clustering-Based Computer Vision Character Detection for Mobile Images

    Yuejie Li1,2,*, Shijun Li3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3041-3070, 2024, DOI:10.32604/cmc.2023.045741 - 26 March 2024

    Abstract 6G is envisioned as the next generation of wireless communication technology, promising unprecedented data speeds, ultra-low Latency, and ubiquitous Connectivity. In tandem with these advancements, blockchain technology is leveraged to enhance computer vision applications’ security, trustworthiness, and transparency. With the widespread use of mobile devices equipped with cameras, the ability to capture and recognize Chinese characters in natural scenes has become increasingly important. Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount, such as facial recognition or personal healthcare monitoring. Users can control their visual data and grant or revoke access as needed.… More >

Displaying 1-10 on page 1 of 106. Per Page