Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (314)
  • Open Access

    ARTICLE

    BDPartNet: Feature Decoupling and Reconstruction Fusion Network for Infrared and Visible Image

    Xuejie Wang1, Jianxun Zhang1,*, Ye Tao2, Xiaoli Yuan1, Yifan Guo1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4621-4639, 2024, DOI:10.32604/cmc.2024.051556

    Abstract While single-modal visible light images or infrared images provide limited information, infrared light captures significant thermal radiation data, whereas visible light excels in presenting detailed texture information. Combining images obtained from both modalities allows for leveraging their respective strengths and mitigating individual limitations, resulting in high-quality images with enhanced contrast and rich texture details. Such capabilities hold promising applications in advanced visual tasks including target detection, instance segmentation, military surveillance, pedestrian detection, among others. This paper introduces a novel approach, a dual-branch decomposition fusion network based on AutoEncoder (AE), which decomposes multi-modal features into intensity… More >

  • Open Access

    ARTICLE

    Image Segmentation-P300 Selector: A Brain–Computer Interface System for Target Selection

    Hang Sun, Changsheng Li*, He Zhang

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2505-2522, 2024, DOI:10.32604/cmc.2024.049898

    Abstract Brain–computer interface (BCI) systems, such as the P300 speller, enable patients to express intentions without necessitating extensive training. However, the complexity of operational instructions and the slow pace of character spelling pose challenges for some patients. In this paper, an image segmentation P300 selector based on YOLOv7-mask and DeepSORT is proposed. The proposed system utilizes a camera to capture real-world objects for classification and tracking. By applying predefined stimulation rules and object-specific masks, the proposed system triggers stimuli associated with the objects displayed on the screen, inducing the generation of P300 signals in the patient’s… More >

  • Open Access

    ARTICLE

    RepBoTNet-CESA: An Alzheimer’s Disease Computer Aided Diagnosis Method Using Structural Reparameterization BoTNet and Cubic Embedding Self Attention

    Xiabin Zhang1,2, Zhongyi Hu1,2,*, Lei Xiao1,2, Hui Huang1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2879-2905, 2024, DOI:10.32604/cmc.2024.048725

    Abstract Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease (AD). Most studies predominantly employ Convolutional Neural Networks (CNNs), which focus solely on local features, thus encountering difficulties in handling global features. In contrast to natural images, Structural Magnetic Resonance Imaging (sMRI) images exhibit a higher number of channel dimensions. However, during the Position Embedding stage of Multi Head Self Attention (MHSA), the coded information related to the channel dimension is disregarded. To tackle these issues, we propose the RepBoTNet-CESA network, an advanced AD-aided diagnostic model that is capable… More >

  • Open Access

    ARTICLE

    HCSP-Net: A Novel Model of Age-Related Macular Degeneration Classification Based on Color Fundus Photography

    Cheng Wan1, Jiani Zhao1, Xiangqian Hong2, Weihua Yang2,*, Shaochong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 391-407, 2024, DOI:10.32604/cmc.2024.048307

    Abstract Age-related macular degeneration (AMD) ranks third among the most common causes of blindness. As the most conventional and direct method for identifying AMD, color fundus photography has become prominent owing to its consistency, ease of use, and good quality in extensive clinical practice. In this study, a convolutional neural network (CSPDarknet53) was combined with a transformer to construct a new hybrid model, HCSP-Net. This hybrid model was employed to tri-classify color fundus photography into the normal macula (NM), dry macular degeneration (DMD), and wet macular degeneration (WMD) based on clinical classification manifestations, thus identifying and… More >

  • Open Access

    ARTICLE

    Braille Character Segmentation Algorithm Based on Gaussian Diffusion

    Zezheng Meng, Zefeng Cai, Jie Feng*, Hanjie Ma, Haixiang Zhang, Shaohua Li

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1481-1496, 2024, DOI:10.32604/cmc.2024.048002

    Abstract Optical braille recognition methods typically employ existing target detection models or segmentation models for the direct detection and recognition of braille characters in original braille images. However, these methods need improvement in accuracy and generalizability, especially in densely dotted braille image environments. This paper presents a two-stage braille recognition framework. The first stage is a braille dot detection algorithm based on Gaussian diffusion, targeting Gaussian heatmaps generated by the convex dots in braille images. This is applied to the detection of convex dots in double-sided braille, achieving high accuracy in determining the central coordinates of More >

  • Open Access

    ARTICLE

    Detection of Student Engagement in E-Learning Environments Using EfficientnetV2-L Together with RNN-Based Models

    Farhad Mortezapour Shiri1,*, Ehsan Ahmadi2, Mohammadreza Rezaee1, Thinagaran Perumal1

    Journal on Artificial Intelligence, Vol.6, pp. 85-103, 2024, DOI:10.32604/jai.2024.048911

    Abstract Automatic detection of student engagement levels from videos, which is a spatio-temporal classification problem is crucial for enhancing the quality of online education. This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos. The evaluation of these models utilizes the DAiSEE dataset, a public repository capturing student affective states in e-learning scenarios. The initial model integrates EfficientNetV2-L with Gated Recurrent Unit (GRU) and attains an accuracy of 61.45%. Subsequently, the second model combines EfficientNetV2-L with bidirectional GRU (Bi-GRU), yielding More >

  • Open Access

    ARTICLE

    Identifying Brand Consistency by Product Differentiation Using CNN

    Hung-Hsiang Wang1, Chih-Ping Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 685-709, 2024, DOI:10.32604/cmes.2024.047630

    Abstract This paper presents a new method of using a convolutional neural network (CNN) in machine learning to identify brand consistency by product appearance variation. In Experiment 1, we collected fifty mouse devices from the past thirty-five years from a renowned company to build a dataset consisting of product pictures with pre-defined design features of their appearance and functions. Results show that it is a challenge to distinguish periods for the subtle evolution of the mouse devices with such traditional methods as time series analysis and principal component analysis (PCA). In Experiment 2, we applied deep… More >

  • Open Access

    ARTICLE

    Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

    Muhammad Armghan Latif1, Zohaib Mushtaq2, Saad Arif3, Sara Rehman4, Muhammad Farrukh Qureshi5, Nagwan Abdel Samee6, Maali Alabdulhafith6,*, Yeong Hyeon Gu7, Mohammed A. Al-masni7

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4225-4241, 2024, DOI:10.32604/cmc.2024.047621

    Abstract Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive boosting, and bagging classifiers are employed. The effectiveness of… More >

  • Open Access

    ARTICLE

    Multi-Branch High-Dimensional Guided Transformer-Based 3D Human Posture Estimation

    Xianhua Li1,2,*, Haohao Yu1, Shuoyu Tian1, Fengtao Lin3, Usama Masood1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3551-3564, 2024, DOI:10.32604/cmc.2024.047336

    Abstract The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional (3D) method that takes into account self-occlusion, badly posedness, and a lack of depth data in the per-frame 3D posture estimation from two-dimensional (2D) mapping to 3D mapping. Firstly, by examining the relationship between the movements of different bones in the human body, four virtual skeletons are proposed to enhance the cyclic constraints of limb joints. Then, multiple parameters describing the skeleton are fused and projected into a high-dimensional space. Utilizing a multi-branch network, motion features between bones and overall motion More >

  • Open Access

    ARTICLE

    A Novel 6G Scalable Blockchain Clustering-Based Computer Vision Character Detection for Mobile Images

    Yuejie Li1,2,*, Shijun Li3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3041-3070, 2024, DOI:10.32604/cmc.2023.045741

    Abstract 6G is envisioned as the next generation of wireless communication technology, promising unprecedented data speeds, ultra-low Latency, and ubiquitous Connectivity. In tandem with these advancements, blockchain technology is leveraged to enhance computer vision applications’ security, trustworthiness, and transparency. With the widespread use of mobile devices equipped with cameras, the ability to capture and recognize Chinese characters in natural scenes has become increasingly important. Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount, such as facial recognition or personal healthcare monitoring. Users can control their visual data and grant or revoke access as needed.… More >

Displaying 1-10 on page 1 of 314. Per Page