Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Neuro-Fuzzy Computational Dynamics of Reactive Hybrid Nanofluid Flow Inside a Squarely Elevated Riga Tunnel with Ramped Thermo-Solutal Conditions under Strong Electromagnetic Rotation

    Asgar Ali1,*, Nayan Sardar2, Poly Karmakar3, Sanatan Das4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3563-3626, 2025, DOI:10.32604/cmes.2025.074082 - 23 December 2025

    Abstract Hybrid nanofluids have gained significant attention for their superior thermal and rheological characteristics, offering immense potential in energy conversion, biomedical transport, and electromagnetic flow control systems. Understanding their dynamic behavior under coupled magnetic, rotational, and reactive effects is crucial for the development of efficient thermal management technologies. This study develops a neuro-fuzzy computational framework to examine the dynamics of a reactive Cu–TiO2–H2O hybrid nanofluid flowing through a squarely elevated Riga tunnel. The governing model incorporates Hall and ion-slip effects, thermal radiation, and first-order chemical reactions under ramped thermo-solutal boundary conditions and rotational electromagnetic forces. Closed-form analytical… More >

  • Open Access

    ARTICLE

    A Consistent Time Level Implementation Preserving Second-Order Time Accuracy via a Framework of Unified Time Integrators in the Discrete Element Approach

    Tao Xue1, Yazhou Wang2, Masao Shimada2, David Tae2, Kumar Tamma2,*, Xiaobing Zhang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1469-1487, 2023, DOI:10.32604/cmes.2022.021616 - 20 September 2022

    Abstract In this work, a consistent and physically accurate implementation of the general framework of unified second-order time accurate integrators via the well-known GSSSS framework in the Discrete Element Method is presented. The improved tangential displacement evaluation in the present implementation of the discrete element method has been derived and implemented to preserve the consistency of the correct time level evaluation during the time integration process in calculating the algorithmic tangential displacement. Several numerical examples have been used to validate the proposed tangential displacement evaluation; this is in contrast to past practices which only seem to… More >

  • Open Access

    ARTICLE

    A Mathematical Framework Towards a Unified Set of Discontinuous State-Phase Hierarchical Time Operators for Computational Dynamics

    R.Kanapady1, K.K.Tamma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 103-118, 2003, DOI:10.3970/cmes.2003.004.103

    Abstract Of general interest here is the time dimension aspect wherein discretized operators in time may be continuous or discontinuous; and of particular interest and focus here is the design of time discretized operators in the context of discontinuous state-phase for computational dynamics applications. Based on a generalized bi-discontinuous time weighted residual formulation, the design leading to a new unified set of hierarchical energy conserving and energy dissipating time discretized operators are developed for the first time that are fundamentally useful for time adaptive computations for dynamic problems. Unlike time discontinuous Galerkin approaches, the design is… More >

Displaying 1-10 on page 1 of 3. Per Page