Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Computation Offloading in Edge Computing for Internet of Vehicles via Game Theory

    Jianhua Liu*, Jincheng Wei, Rongxin Luo, Guilin Yuan, Jiajia Liu, Xiaoguang Tu

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1337-1361, 2024, DOI:10.32604/cmc.2024.056286 - 15 October 2024

    Abstract With the rapid advancement of Internet of Vehicles (IoV) technology, the demands for real-time navigation, advanced driver-assistance systems (ADAS), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, and multimedia entertainment systems have made in-vehicle applications increasingly computing-intensive and delay-sensitive. These applications require significant computing resources, which can overwhelm the limited computing capabilities of vehicle terminals despite advancements in computing hardware due to the complexity of tasks, energy consumption, and cost constraints. To address this issue in IoV-based edge computing, particularly in scenarios where available computing resources in vehicles are scarce, a multi-master and multi-slave double-layer game model More >

  • Open Access

    ARTICLE

    GCAGA: A Gini Coefficient-Based Optimization Strategy for Computation Offloading in Multi-User-Multi-Edge MEC System

    Junqing Bai1, Qiuchao Dai1,*, Yingying Li2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5083-5103, 2024, DOI:10.32604/cmc.2024.050921 - 20 June 2024

    Abstract To support the explosive growth of Information and Communications Technology (ICT), Mobile Edge Computing (MEC) provides users with low latency and high bandwidth service by offloading computational tasks to the network’s edge. However, resource-constrained mobile devices still suffer from a capacity mismatch when faced with latency-sensitive and compute-intensive emerging applications. To address the difficulty of running computationally intensive applications on resource-constrained clients, a model of the computation offloading problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper. Then a user benefit function EoU (Experience of Users) is… More >

  • Open Access

    ARTICLE

    Multi-Agent Deep Reinforcement Learning for Efficient Computation Offloading in Mobile Edge Computing

    Tianzhe Jiao, Xiaoyue Feng, Chaopeng Guo, Dongqi Wang, Jie Song*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3585-3603, 2023, DOI:10.32604/cmc.2023.040068 - 08 October 2023

    Abstract Mobile-edge computing (MEC) is a promising technology for the fifth-generation (5G) and sixth-generation (6G) architectures, which provides resourceful computing capabilities for Internet of Things (IoT) devices, such as virtual reality, mobile devices, and smart cities. In general, these IoT applications always bring higher energy consumption than traditional applications, which are usually energy-constrained. To provide persistent energy, many references have studied the offloading problem to save energy consumption. However, the dynamic environment dramatically increases the optimization difficulty of the offloading decision. In this paper, we aim to minimize the energy consumption of the entire MEC system… More >

  • Open Access

    ARTICLE

    Energy and Latency Optimization in Edge-Fog-Cloud Computing for the Internet of Medical Things

    Hatem A. Alharbi1, Barzan A. Yosuf2, Mohammad Aldossary3,*, Jaber Almutairi4

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1299-1319, 2023, DOI:10.32604/csse.2023.039367 - 26 May 2023

    Abstract In this paper, the Internet of Medical Things (IoMT) is identified as a promising solution, which integrates with the cloud computing environment to provide remote health monitoring solutions and improve the quality of service (QoS) in the healthcare sector. However, problems with the present architectural models such as those related to energy consumption, service latency, execution cost, and resource usage, remain a major concern for adopting IoMT applications. To address these problems, this work presents a four-tier IoMT-edge-fog-cloud architecture along with an optimization model formulated using Mixed Integer Linear Programming (MILP), with the objective of… More >

  • Open Access

    ARTICLE

    Auto-Scaling Framework for Enhancing the Quality of Service in the Mobile Cloud Environments

    Yogesh Kumar1,*, Jitender Kumar1, Poonam Sheoran2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5785-5800, 2023, DOI:10.32604/cmc.2023.039276 - 29 April 2023

    Abstract On-demand availability and resource elasticity features of Cloud computing have attracted the focus of various research domains. Mobile cloud computing is one of these domains where complex computation tasks are offloaded to the cloud resources to augment mobile devices’ cognitive capacity. However, the flexible provisioning of cloud resources is hindered by uncertain offloading workloads and significant setup time of cloud virtual machines (VMs). Furthermore, any delays at the cloud end would further aggravate the miseries of real-time tasks. To resolve these issues, this paper proposes an auto-scaling framework (ACF) that strives to maintain the quality… More >

  • Open Access

    ARTICLE

    E-MOGWO Algorithm for Computation Offloading in Fog Computing

    Jyoti Yadav*, Suman

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1063-1078, 2023, DOI:10.32604/iasc.2023.032883 - 29 September 2022

    Abstract Despite the advances mobile devices have endured, they still remain resource-restricted computing devices, so there is a need for a technology that supports these devices. An emerging technology that supports such resource-constrained devices is called fog computing. End devices can offload the task to close-by fog nodes to improve the quality of service and experience. Since computation offloading is a multiobjective problem, we need to consider many factors before taking offloading decisions, such as task length, remaining battery power, latency, communication cost, etc. This study uses the multiobjective grey wolf optimization (MOGWO) technique for optimizing… More >

  • Open Access

    ARTICLE

    Efficient Computation Offloading of IoT-Based Workflows Using Discrete Teaching Learning-Based Optimization

    Mohamed K. Hussein1,*, Mohamed H. Mousa1,2

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3685-3703, 2022, DOI:10.32604/cmc.2022.026370 - 16 June 2022

    Abstract As the Internet of Things (IoT) and mobile devices have rapidly proliferated, their computationally intensive applications have developed into complex, concurrent IoT-based workflows involving multiple interdependent tasks. By exploiting its low latency and high bandwidth, mobile edge computing (MEC) has emerged to achieve the high-performance computation offloading of these applications to satisfy the quality-of-service requirements of workflows and devices. In this study, we propose an offloading strategy for IoT-based workflows in a high-performance MEC environment. The proposed task-based offloading strategy consists of an optimization problem that includes task dependency, communication costs, workflow constraints, device energy More >

  • Open Access

    ARTICLE

    Optimization of Face Recognition System Based on Azure IoT Edge

    Shen Li1, Fang Liu1,*, Jiayue Liang1, Zhenhua Cai1, Zhiyao Liang2

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 1377-1389, 2019, DOI:10.32604/cmc.2019.06402

    Abstract With the rapid development of artificial intelligence, face recognition systems are widely used in daily lives. Face recognition applications often need to process large amounts of image data. Maintaining the accuracy and low latency is critical to face recognition systems. After analyzing the two-tier architecture “client-cloud” face recognition systems, it is found that these systems have high latency and network congestion when massive recognition requirements are needed to be responded, and it is very inconvenient and inefficient to deploy and manage relevant applications on the edge of the network. This paper proposes a flexible and… More >

  • Open Access

    ARTICLE

    Efficient Computation Offloading in Mobile Cloud Computing for Video Streaming Over 5G

    Bokyun Jo1, Md. Jalil Piran2,*, Daeho Lee3, Doug Young Suh4,*

    CMC-Computers, Materials & Continua, Vol.61, No.2, pp. 439-463, 2019, DOI:10.32604/cmc.2019.08194

    Abstract In this paper, we investigate video quality enhancement using computation offloading to the mobile cloud computing (MCC) environment. Our objective is to reduce the computational complexity required to covert a low-resolution video to high-resolution video while minimizing computation at the mobile client and additional communication costs. To do so, we propose an energy-efficient computation offloading framework for video streaming services in a MCC over the fifth generation (5G) cellular networks. In the proposed framework, the mobile client offloads the computational burden for the video enhancement to the cloud, which renders the side information needed to… More >

  • Open Access

    ARTICLE

    Deep Q-Learning Based Computation Offloading Strategy for Mobile Edge Computing

    Yifei Wei1,*, Zhaoying Wang1, Da Guo1, F. Richard Yu2

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 89-104, 2019, DOI:10.32604/cmc.2019.04836

    Abstract To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services, the mobile edge computing (MEC) has been drawing increased attention from both industry and academia recently. This paper focuses on mobile users’ computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy. Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown, we use the model-free reinforcement learning (RL) framework to formulate and tackle the computation offloading problem. Each mobile user… More >

Displaying 1-10 on page 1 of 10. Per Page