Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (745)
  • Open Access

    PROCEEDINGS

    A Study of High Volume Fraction SiC/Al Composites Prepared by a Novel Hybrid Additive Manufacturing

    Guizhou Liu1,2, Chunze Yan1,2,*, Yusheng Shi1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013340

    Abstract High-volume-fraction SiC/Al (HVF-SiC/Al) have a wide range of applications in aerospace, optics, automotive and electronic packaging. However, because the hardness, brittleness and wear resistance increase with the increase in the volume fraction, it is difficult for traditional methods such as machining, to process HVF-SiC/Al composites to complex components. Therefore, in this paper, a novel method of the hybrid additive manufacturing is proposed to fabricate HVF-SiC/Al parts with complex structures. The effect of polymer infiltration and pyrolysis (PIP) on microstructure and properties of HVF-SiC/Al composites is investigated. The results show that the mechanical properties of the… More >

  • Open Access

    PROCEEDINGS

    Study on the Effect of Welding Sequence on Residual Stress in Post Internal-Welding Joint of Bimetal Composite Pipe

    Zhenhua Gao1, Bin Han1,*, Shengyuan Niu1, Liying Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-4, 2024, DOI:10.32604/icces.2024.013339

    Abstract With the rapid development of industry and globalization, the demand and strategic importance of oil and natural gas have become increasingly significant, leading to energy extraction in more complex corrosive environments [1, 2]. Bimetallic composite pipes, which offer strength and corrosion resistance, exhibit promising potential. For the welding of bimetallic composite plates, it is optimal to follow the welding sequence of the base layer, transition layer, and inner layer [3, 4]. For the welding of bimetal composite pipes, due to the diameter limit, the inner layer is usually welded first, followed by the transition layer,… More >

  • Open Access

    PROCEEDINGS

    Fragment Penetration Damage Characteristics of Typical Composite Armor

    Yuan Li1,3,*, Zhiqiang Fan1,2, Tao Suo1,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.013336

    Abstract Light armored vehicles, as the primary means of force transport on contemporary battlefields, require not only high mobility but also better protection to meet the complex battlefield environment and mission requirements. Composite armor is widely used in the design of light armored vehicles due to its lightweight and excellent defensible performance. In this paper, the damage law of the composite armor of an infantry fighting vehicle, when penetrated by fragment-simulated projectiles (FSP), is studied by numerical simulation, and the homogeneous equivalent targets surrogating a combination of local protective armor and vulnerable parts are constructed based More >

  • Open Access

    PROCEEDINGS

    Progressive Damage Analysis of 3D Woven Composite SENT Test Using a Ternary Model

    Wushuai Liu1, Wu Xu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012893

    Abstract It is of great significance for improving the in-plane fracture toughness of 3D woven composite (3DWC) to study the failure mechanism of a single edge notch tension (SENT) test. It requires a relatively high computational cost to establish the SENT model based on conformal modeling method. A SENT is established using a proposed ternary model. The matrix cracking, yarn rupture, and debonding at the yarn/matrix interface are involved in the ternary model. Based on the developed SENT model, the progressive damage initiation and evolution of 3DWC SENT are predicted. The load-displacement curves and damage of More >

  • Open Access

    PROCEEDINGS

    Characterization and Numerical Simulation of Delamination Propagation Behavior in Carbon Fiber Reinforced Composite Laminates

    Yu Gong1,*, Jianyu Zhang1, Libin Zhao2, Ning Hu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011451

    Abstract Advanced carbon fiber reinforced composite materials are increasingly being used in aerospace and other fields. Composite laminate structure is one of the commonly used configurations, but due to weak interlayer performance, interlayer delamination is prone to occur [1]. The occurrence and growth of delamination will seriously affect the overall integrity and safety of composite structures, making it a focus of attention in the design of laminated structures. Accurately characterizing the delamination mechanical properties of composite laminates and simulating delamination propagation behavior is the basis for damage tolerance design and analysis of composite structures with delamination… More >

  • Open Access

    PROCEEDINGS

    Strengthening Mechanical Performance with Robust and Efficient Machine Learning-Assisted Path Planning for Additive Manufacturing of Continuous Fiber Composites

    Xinmeng Zha1, Huilin Ren1,*, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011371

    Abstract Additive manufacturing of continuous fiber composites is an emerging field that enables the tunable mechanical performance of composite structure by flexibly controlling the spatial layout of continuous fibers. Transverse isotropic strengthening is advantageous property of continuous fiber, which is favorable to align with the principal stress orientation. However, the accuracy and efficiency of traditional methods for calculating principal stress field are unguaranteed due to the inherent complexity and variability of geometries, material properties, and operational conditions in additive manufacturing. Therefore, a machine learning-assisted path planning method is proposed to robustly and efficiently generate the continuous… More >

  • Open Access

    PROCEEDINGS

    Mechanical Properties and Failure Modes of 3D-Printed Continuous Fiber-Reinforced Single-Bolt Composite Joints with Curved Paths and Variable Hatch Spaces

    Xin Zhang1,2, Xitao Zheng1,2, Tiantian Yang3, Mingyu Song1,2, Yuanyuan Tian4, Leilei Yan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011277

    Abstract Composite joints are widely used in machinery industries such as aviation, aerospace, and marine, where they transfer main loads as lightweight connectors. Recently, 3D printing with continuous fibers has relieved the required molds in composite manufacturing process and given flexibility to the design of robust composite joints. However, how the curved paths and variable hatch spaces affect the mechanical properties and failure modes of 3D-printed single-bolt composite joints with continuous fibers remains undisclosed. In this study, 3D printing has been introduced to fabricate three types of continuous fiber-reinforced single-bolt composite joints with different paths, including… More >

  • Open Access

    PROCEEDINGS

    Finite Element Modelling of Composite Armor Against 7.62 mm Projectile Impact

    Lei Peng1,*, Jin Zhou2, Xianfeng Zhang3, Zhongwei Guan4,5

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011196

    Abstract This paper presents the numerical modelling of the ballistic response of hybrid composite structures subjected to 7.62 mm projectile impact. This study focuses on the modelling of composites made of various materials, including ceramics, Ultra-High-Molecular-Weight Polyethylene (UHMWPE), Kevlar, and compressed wood, with fabrication of hybrid laminated structures that offer promising ballistic resistance capabilities. By employing a range of constitutive models and failure criteria, the finite element model simulates the ballistic behaviors of the constituent materials, facilitating a comprehensive understanding of their performance under high-velocity impacts. The core of the study lies in the comparison between… More >

  • Open Access

    PROCEEDINGS

    Refined Microstructures and Enhanced Strength of In-Situ TiBw/Ti-6.5Al-2.5Zr-1Mo-1V Composites by Selective Laser Melting

    Qi An1,*, Lihua Cui1, Lujun Huang1, Lin Geng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011973

    Abstract Ti-6.5Al-2.5Zr-1Mo-1V alloy is a near α titanium alloy, which has been widely used in aerospace fields due to its low density, high specific strength, good corrosion resistance and high-temperature durability. To further improve the strength and high-temperature durability of Ti-6.5Al-2.5Zr-1Mo-1V complex components, the spherical Ti-6.5Al-2.5Zr-1Mo-1V alloy powder with a particle size of 15~53 μm and TiB2 powder with a particle size of 0.5~1 μm were used to fabricate in-situ TiBw reinforced Ti-6.5Al-2.5Zr-1Mo-1V composites through low energy ball milling and selective laser melting (SLM). The results show that the TiB whiskers are uniformly distributed in the More >

  • Open Access

    PROCEEDINGS

    Analytical Modeling for Asymmetric Four-Point Bend End-Notched Flexure Delamination Testing of Composite Laminates Considering Friction

    Kaixin Xia1, Yu Gong2,*, Xinxin Qi3,4, Libin Zhao3,4,*, Linjuan Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011650

    Abstract The crack tip of the asymmetric four-point bend end-notched flexure (4AENF) delamination testing under shear loading often exhibits a proportion of mode I component, making it a typical mixed-mode I/II problem. Characterizing the total fracture toughness in 4AENF laminates is crucial for understanding the delamination phenomenon in composites. In this study, 4AENF tests were conducted on carbon fiber-reinforced epoxy asymmetric laminates to evaluate the total interlaminar fracture toughness under shear loading conditions. Additionally, the variation of interlaminar fracture toughness in asymmetric laminates with different fiber orientation angles was considered. Theoretical modelling was performed using an More >

Displaying 1-10 on page 1 of 745. Per Page