Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    Review of Metaheuristic Optimization Techniques for Enhancing E-Health Applications

    Qun Song1, Chao Gao1, Han Wu1, Zhiheng Rao1, Huafeng Qin1,*, Simon Fong1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-49, 2026, DOI:10.32604/cmc.2025.070918 - 09 December 2025

    Abstract Metaheuristic algorithms, renowned for strong global search capabilities, are effective tools for solving complex optimization problems and show substantial potential in e-Health applications. This review provides a systematic overview of recent advancements in metaheuristic algorithms and highlights their applications in e-Health. We selected representative algorithms published between 2019 and 2024, and quantified their influence using an entropy-weighted method based on journal impact factors and citation counts. CThe Harris Hawks Optimizer (HHO) demonstrated the highest early citation impact. The study also examined applications in disease prediction models, clinical decision support, and intelligent health monitoring. Notably, the More >

  • Open Access

    ARTICLE

    Narwhal Optimizer: A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems

    Raja Masadeh1, Omar Almomani2,*, Abdullah Zaqebah1, Shayma Masadeh3, Kholoud Alshqurat3, Ahmad Sharieh4, Nesreen Alsharman5

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3709-3737, 2025, DOI:10.32604/cmc.2025.066797 - 23 September 2025

    Abstract This research presents a novel nature-inspired metaheuristic optimization algorithm, called the Narwhale Optimization Algorithm (NWOA). The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals, “unicorns of the sea”, particularly the use of their distinctive spiral tusks, which play significant roles in hunting, searching prey, navigation, echolocation, and complex social interaction. Particularly, the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the… More >

  • Open Access

    ARTICLE

    Wild Gibbon Optimization Algorithm

    Jia Guo1,2,4,6, Jin Wang2, Ke Yan3, Qiankun Zuo1,2,4,*, Ruiheng Li1,2,4, Zhou He1,2,4, Dong Wang5, Yuji Sato6

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1203-1233, 2024, DOI:10.32604/cmc.2024.051336 - 18 July 2024

    Abstract Complex optimization problems hold broad significance across numerous fields and applications. However, as the dimensionality of such problems increases, issues like the curse of dimensionality and local optima trapping also arise. To address these challenges, this paper proposes a novel Wild Gibbon Optimization Algorithm (WGOA) based on an analysis of wild gibbon population behavior. WGOA comprises two strategies: community search and community competition. The community search strategy facilitates information exchange between two gibbon families, generating multiple candidate solutions to enhance algorithm diversity. Meanwhile, the community competition strategy reselects leaders for the population after each iteration, More >

Displaying 1-10 on page 1 of 3. Per Page