Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    A Secure Blockchain-Based Vehicular Collision Avoidance Protocol: Detecting and Preventing Blackhole Attacks

    Mosab Manaseer1, Maram Bani Younes2,*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1699-1721, 2024, DOI:10.32604/csse.2024.055128 - 22 November 2024

    Abstract This work aims to examine the vulnerabilities and threats in the applications of intelligent transport systems, especially collision avoidance protocols. It focuses on achieving the availability of network communication among traveling vehicles. Finally, it aims to find a secure solution to prevent blackhole attacks on vehicular network communications. The proposed solution relies on authenticating vehicles by joining a blockchain network. This technology provides identification information and receives cryptography keys. Moreover, the ad hoc on-demand distance vector (AODV) protocol is used for route discovery and ensuring reliable node communication. The system activates an adaptive mode for monitoring More >

  • Open Access

    PROCEEDINGS

    Collision-Induced Adhesion Behavior and Mechanism for Metal Particle and Graphene

    Haitao Hei1, Jian Wang1, Yonggang Zheng1, Hongfei Ye1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011298

    Abstract Micro- and nano-scale collisions are widely involved in molecular movement, drug delivery, the actuation of micro-nano devices, etc. They often exhibit extraordinary behaviour relative to the common macroscopic collisions. A deep understanding on the scale reduction-induced novel collision phenomenon and the related mechanism is rather crucial. In this work, the comprehensive impact behaviour of metal projectiles on graphene is investigated on the basis of molecular dynamics simulations. It is found that besides the common penetration and rebound behaviours, the impacting metal projectile can also be captured by the ultrasoft two-dimensional materials, i.e., the adhesion behaviour.… More >

  • Open Access

    ARTICLE

    Virtual Assembly Collision Detection Algorithm Using Backpropagation Neural Network

    Baowei Wang1,2,*, Wen You2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1085-1100, 2024, DOI:10.32604/cmc.2024.055538 - 15 October 2024

    Abstract As computer graphics technology continues to advance, Collision Detection (CD) has emerged as a critical element in fields such as virtual reality, computer graphics, and interactive simulations. CD is indispensable for ensuring the fidelity of physical interactions and the realism of virtual environments, particularly within complex scenarios like virtual assembly, where both high precision and real-time responsiveness are imperative. Despite ongoing developments, current CD techniques often fall short in meeting these stringent requirements, resulting in inefficiencies and inaccuracies that impede the overall performance of virtual assembly systems. To address these limitations, this study introduces a… More >

  • Open Access

    ARTICLE

    Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems

    Naeem Raza1, Muhammad Asif Habib1, Mudassar Ahmad1, Qaisar Abbas2,*, Mutlaq B. Aldajani2, Muhammad Ahsan Latif3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 911-931, 2024, DOI:10.32604/cmc.2024.055049 - 15 October 2024

    Abstract Vision-based vehicle detection in adverse weather conditions such as fog, haze, and mist is a challenging research area in the fields of autonomous vehicles, collision avoidance, and Internet of Things (IoT)-enabled edge/fog computing traffic surveillance and monitoring systems. Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time. To evaluate vision-based vehicle detection performance in foggy weather conditions, state-of-the-art Vehicle Detection in Adverse Weather Nature (DAWN) and Foggy Driving (FD) datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle… More >

  • Open Access

    ARTICLE

    A Novel Anti-Collision Algorithm for Large Scale of UHF RFID Tags Access Systems

    Xu Zhang1, Yi He1, Haiwen Yi1, Yulu Zhang2, Yuan Li2, Shuai Ma2, Gui Li3, Zhiyuan Zhao4, Yue Liu1, Junyang Liu1, Guangjun Wen1, Jian Li1,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 897-912, 2024, DOI:10.32604/cmc.2024.050000 - 18 July 2024

    Abstract When the radio frequency identification (RFID) system inventories multiple tags, the recognition rate will be seriously affected due to collisions. Based on the existing dynamic frame slotted Aloha (DFSA) algorithm, a sub-frame observation and cyclic redundancy check (CRC) grouping combined dynamic framed slotted Aloha (SUBF-CGDFSA) algorithm is proposed. The algorithm combines the precise estimation method of the quantity of large-scale tags, the large-scale tags grouping mechanism based on CRC pseudo-random characteristics, and the Aloha anti-collision optimization mechanism based on sub-frame observation. By grouping tags and sequentially identifying them within subframes, it accurately estimates the number More >

  • Open Access

    ARTICLE

    MD Simulation of Diffusion Behaviors in Collision Welding Processes of Al-Cu, Al-Al, Cu-Cu

    Dingyi Jin1, Guo Wei2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3455-3468, 2024, DOI:10.32604/cmc.2024.048644 - 20 June 2024

    Abstract To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces, this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al, Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic (MD) simulation. The atomic diffusion behaviors are compared between similar metal combinations (Al-Al, Cu-Cu) and dissimilar metal combinations (Al-Cu). By combining the simulation results and classical diffusion theory, the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained. The effects of material combinations and collision velocity on diffusion behaviors More >

  • Open Access

    ARTICLE

    Numerical Exploration of Asymmetrical Impact Dynamics: Unveiling Nonlinearities in Collision Problems and Resilience of Reinforced Concrete Structures

    AL-Bukhaiti Khalil1, Yanhui Liu1,*, Shichun Zhao1, Daguang Han2

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 223-254, 2024, DOI:10.32604/sdhm.2024.044751 - 15 May 2024

    Abstract This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing on geometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision. The initial discussion revolves around the stress and strain of large deformation during a collision, followed by explanations of the fundamental finite element solution method for addressing such issues. The hourglass mode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailed and implemented within the finite element framework. The paper further investigates the dynamic response and failure modes of Reinforced Concrete (RC)… More >

  • Open Access

    ARTICLE

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

    Xiaoli Li, Tongtong Jiao#, Jinfeng Ma, Dongxing Duan, Shengbin Liang#,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 595-617, 2024, DOI:10.32604/cmes.2023.029367 - 22 September 2023

    Abstract In view of the complex marine environment of navigation, especially in the case of multiple static and dynamic obstacles, the traditional obstacle avoidance algorithms applied to unmanned surface vehicles (USV) are prone to fall into the trap of local optimization. Therefore, this paper proposes an improved artificial potential field (APF) algorithm, which uses 5G communication technology to communicate between the USV and the control center. The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios. Considering the various scenarios between the… More > Graphic Abstract

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

  • Open Access

    ARTICLE

    AI Safety Approach for Minimizing Collisions in Autonomous Navigation

    Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal on Artificial Intelligence, Vol.5, pp. 1-14, 2023, DOI:10.32604/jai.2023.039786 - 08 August 2023

    Abstract Autonomous agents can explore the environment around them when equipped with advanced hardware and software systems that help intelligent agents minimize collisions. These systems are developed under the term Artificial Intelligence (AI) safety. AI safety is essential to provide reliable service to consumers in various fields such as military, education, healthcare, and automotive. This paper presents the design of an AI safety algorithm for safe autonomous navigation using Reinforcement Learning (RL). Machine Learning Agents Toolkit (ML-Agents) was used to train the agent with a proximal policy optimizer algorithm with an intrinsic curiosity module (PPO + ICM). This training… More >

  • Open Access

    ARTICLE

    Circular Formation Control with Collision Avoidance Based on Probabilistic Position

    Hamida Litimein1, Zhen-You Huang1, Muhammad Shamrooz Aslam2,*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 321-341, 2023, DOI:10.32604/iasc.2023.036786 - 29 April 2023

    Abstract In this paper, we study the circular formation problem for the second-order multi-agent systems in a plane, in which the agents maintain a circular formation based on a probabilistic position. A distributed hybrid control protocol based on a probabilistic position is designed to achieve circular formation stabilization and consensus. In the current framework, the mobile agents follow the following rules: 1) the agent must follow a circular trajectory; 2) all the agents in the same circular trajectory must have the same direction. The formation control objective includes two parts: 1) drive all the agents to More >

Displaying 1-10 on page 1 of 42. Per Page