Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    PROCEEDINGS

    Mechanics Model of Face-Core and Inner Core Debonding of Composite Honeycomb Sandwich Structures

    Jian Xiong1,*, Pengcheng Xue1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-3, 2024, DOI:10.32604/icces.2024.011785

    Abstract Carbon fiber-reinforced plastic (CFRP) composite sandwich structures, due to their excellent mechanical properties and lightweight characteristics, are widely used in aerospace, marine, automotive, and wind turbine blade structures [1]. Different from traditional sandwich structures, composite honeycomb sandwich structures exhibit brittle properties, potentially leading to sudden and catastrophic debonding failure without any warning. Consequently, the interfaces between the face-core and the inner core may become the weakest parts of the structural system.
    This paper presents a theoretical and experimental investigation into the debonding behavior of the face-core and inner core in composite honeycomb sandwich structures. Based on… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Fiber Reinforced Polymer-Confined Concrete under Cyclic Compression Using Cohesive Zone Models

    Mingxu Zhang1, Mingliang Wang2, Wei Zhang3,*

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 599-622, 2024, DOI:10.32604/sdhm.2024.051949 - 19 July 2024

    Abstract This paper examines the mechanical behavior of fiber reinforced polymer (FRP)-confined concrete under cyclic compression using the 3D cohesive zone model (CZM). A numerical modeling method was developed, employing zero-thickness cohesive elements to represent the stress-displacement relationship of concrete potential fracture surfaces and FRP-concrete interfaces. Additionally, mixed-mode damage plastic constitutive models were proposed for the concrete potential fracture surfaces and FRP-concrete interface, considering interfacial friction. Furthermore, an anisotropic plastic constitutive model was developed for the FRP composite jacket. The CZM model proposed in this study was validated using experimental data from plain concrete and large More >

  • Open Access

    ARTICLE

    Constitutive Behavior of the Interface between UHPC and Steel Plate without Shear Connector: From Experimental to Numerical Study

    Zihan Wang1, Boshan Zhang2, Hui Wang1,*, Qing Ai1, Xingchun Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1863-1888, 2024, DOI:10.32604/cmes.2024.048217 - 20 May 2024

    Abstract The application of ultra-high performance concrete (UHPC) as a covering layer for steel bridge decks has gained widespread popularity. By employing a connection without a shear connector between the steel plate and UHPC, namely, the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface, the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated. This study develops constitutive models for these two interfaces without shear connectors, based on the interfacial pull-off and push-out tests. For validation, three-point bending tests on the steel-UHPC composite More >

  • Open Access

    ARTICLE

    Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade

    Haixia Kou1,*, Bowen Yang1, Xuyao Zhang2, Xiaobo Yang1, Haibo Zhao1

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 277-297, 2024, DOI:10.32604/sdhm.2024.045023 - 15 May 2024

    Abstract Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades (referred to as blades), this paper takes the main beam structure of the blade with a rectangular cross-section as the simulation object and establishes a composite laminate rectangular beam structure that simultaneously includes the flange, web, and adhesive layer, referred to as the blade main beam sub-structure specimen, through the definition of blade sub-structures. This paper examines the progressive damage evolution law of the composite laminate rectangular beam utilizing an improved 3D Hashin failure criterion, cohesive zone model, B-K failure More > Graphic Abstract

    Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade

  • Open Access

    ARTICLE

    Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction

    Chengbao Hu1,2,3, Shilin Gong4,*, Bin Chen1,2,3, Zhongling Zong4, Xingwang Bao5, Xiaojian Ru5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 997-1015, 2024, DOI:10.32604/cmes.2024.048640 - 16 April 2024

    Abstract Strain localization frequently occurs in cohesive materials with friction (e.g., composites, soils, rocks) and is widely recognized as a fundamental cause of progressive structural failure. Nonetheless, achieving high-fidelity simulation for this issue, particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones, remains significantly constrained. In response, this study introduces an integrated algorithm within the finite element framework, merging a coupled cohesive zone model (CZM) with the nonlinear augmented finite element method (N-AFEM). The coupled CZM comprehensively describes tension-compression and compression-shear failure behaviors in cohesive, frictional materials, while the N-AFEM allows nonlinear coupled intra-element discontinuities More >

  • Open Access

    ARTICLE

    Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model

    Gang Niu1,2, Zhaoyang Jin2, Wei Zhang3,*, Yiqun Huang3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 161-179, 2024, DOI:10.32604/sdhm.2023.044580 - 22 March 2024

    Abstract Amid urbanization and the continuous expansion of transportation networks, the necessity for tunnel construction and maintenance has become paramount. Addressing this need requires the investigation of efficient, economical, and robust tunnel reinforcement techniques. This paper explores fiber reinforced polymer (FRP) and steel fiber reinforced concrete (SFRC) technologies, which have emerged as viable solutions for enhancing tunnel structures. FRP is celebrated for its lightweight and high-strength attributes, effectively augmenting load-bearing capacity and seismic resistance, while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments. Nonetheless, current research predominantly focuses on experimental analysis,… More > Graphic Abstract

    Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model

  • Open Access

    ARTICLE

    Impact Analysis of Microscopic Defect Types on the Macroscopic Crack Propagation in Sintered Silver Nanoparticles

    Zhongqing Zhang1, Bo Wan1,*, Guicui Fu1, Yutai Su2,*, Zhaoxi Wu3, Xiangfen Wang1, Xu Long2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 441-458, 2024, DOI:10.32604/cmes.2023.043616 - 30 December 2023

    Abstract Sintered silver nanoparticles (AgNPs) are widely used in high-power electronics due to their exceptional properties. However, the material reliability is significantly affected by various microscopic defects. In this work, the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified, categorized, and quantified. Molecular dynamics (MD) simulations are employed to observe the failure evolution of different microscopic defects. The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion. At the same time, this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of More >

  • Open Access

    ABSTRACT

    A Paris Law-Based Cohesive Zone Model for Fatigue Crack Growth Simulations

    Akiyuki Takahashi1,*, Takaki Fujiwara1, Yuichi Shintaku2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.4, pp. 170-170, 2019, DOI:10.32604/icces.2019.05151

    Abstract This paper presents a Paris law-based cohesive zone model (CZM) for fatigue crack growth simulations to enable the consideration of the plasticity induced crack closure effect, which is known to be a source of substantial crack growth retardation. In order to avoid the addition of any redundant model parameters, the basic equation of the CZM is derived from the Paris law so that the CZM has only the parameters of Paris law. Thus, the parameters can be determined by referring the existing experimental data of the Paris law without any troublesome fitting processes. Only the More >

  • Open Access

    ARTICLE

    Progressive Failure Evaluation of Composite Skin-Stiffener Joints Using Node to Surface Interactions and CZM

    A. Sane1,*, P. M. Padole1, R. V. Uddanwadiker1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.2, pp. 281-294, 2018, DOI:10.3970/cmes.2018.05046

    Abstract T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components. It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however, in specific applications these joints undergo pull loading. De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure. Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied. In this study, Finite Element Analysis has been performed using… More >

  • Open Access

    ARTICLE

    Comparison between a Cohesive Zone Model and a Continuum Damage Model in Predicting Mode-I Fracture Behavior of Adhesively Bonded Joints

    K.I. Tserpes1, A.S. Koumpias1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.2, pp. 169-182, 2012, DOI:10.32604/cmes.2012.083.169

    Abstract In this work, a comparison between a cohesive zone model and a continuum damage model in predicting the mode-I fracture behavior of adhesively bonded joints is performed on the basis of reliability and applicability. The cohesive zone model (CZM) is based on an exponential traction law characterizing the behavior of the interface elements. The continuum damage model (CDM) is based on the stiffness degradation of adhesive elements imposed by a damage parameter. Both models have been implemented by means of a 3D finite element model. Mode-I fracture behavior of the bonded joints was characterized using… More >

Displaying 1-10 on page 1 of 13. Per Page