Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (403)
  • Open Access

    ARTICLE

    Classification d’aires de dispersion à l’aide d’un facteur géographique

    Application à la dialectologie

    Clément Chagnaud1,3, Philippe Garat2, Paule-Annick Davoine1,3, Guylaine Brun-Trigaud4

    Revue Internationale de Géomatique, Vol.30, No.1, pp. 67-83, 2020, DOI:10.3166/rig.2020.00107

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Semi-Supervised Clustering Algorithm Based on Deep Feature Mapping

    Xiong Xu1, Chun Zhou2,*, Chenggang Wang1, Xiaoyan Zhang2, Hua Meng2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 815-831, 2023, DOI:10.32604/iasc.2023.034656

    Abstract Clustering analysis is one of the main concerns in data mining. A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other. Therefore, measuring the distance between sample points is crucial to the effectiveness of clustering. Filtering features by label information and measuring the distance between samples by these features is a common supervised learning method to reconstruct distance metric. However, in many application scenarios, it is very expensive to obtain a large number of labeled samples. In this paper, to solve the clustering… More >

  • Open Access

    ARTICLE

    Index-adaptive Triangle-Based Graph Local Clustering

    Zhe Yuan*, Zhewei Wei, Ji-rong Wen

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5009-5026, 2023, DOI:10.32604/cmc.2023.038531

    Abstract Motif-based graph local clustering (MGLC) algorithms are generally designed with the two-phase framework, which gets the motif weight for each edge beforehand and then conducts the local clustering algorithm on the weighted graph to output the result. Despite correctness, this framework brings limitations on both practical and theoretical aspects and is less applicable in real interactive situations. This research develops a purely local and index-adaptive method, Index-adaptive Triangle-based Graph Local Clustering (TGLC+), to solve the MGLC problem w.r.t. triangle. TGLC+ combines the approximated Monte-Carlo method Triangle-based Random Walk (TRW) and deterministic Brute-Force method Triangle-based Forward Push (TFP) adaptively to estimate… More >

  • Open Access

    ARTICLE

    A Progressive Approach to Generic Object Detection: A Two-Stage Framework for Image Recognition

    Muhammad Aamir1, Ziaur Rahman1,*, Waheed Ahmed Abro2, Uzair Aslam Bhatti3, Zaheer Ahmed Dayo1, Muhammad Ishfaq1

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6351-6373, 2023, DOI:10.32604/cmc.2023.038173

    Abstract Object detection in images has been identified as a critical area of research in computer vision image processing. Research has developed several novel methods for determining an object’s location and category from an image. However, there is still room for improvement in terms of detection efficiency. This study aims to develop a technique for detecting objects in images. To enhance overall detection performance, we considered object detection a two-fold problem, including localization and classification. The proposed method generates class-independent, high-quality, and precise proposals using an agglomerative clustering technique. We then combine these proposals with the relevant input image to train… More >

  • Open Access

    ARTICLE

    Blockchain-Based Data Acquisition with Privacy Protection in UAV Cluster Network

    Lemei Da1, Hai Liang1,*, Yong Ding1,2, Yujue Wang1, Changsong Yang1, Huiyong Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 879-902, 2023, DOI:10.32604/cmes.2023.026309

    Abstract The unmanned aerial vehicle (UAV) self-organizing network is composed of multiple UAVs with autonomous capabilities according to a certain structure and scale, which can quickly and accurately complete complex tasks such as path planning, situational awareness, and information transmission. Due to the openness of the network, the UAV cluster is more vulnerable to passive eavesdropping, active interference, and other attacks, which makes the system face serious security threats. This paper proposes a Blockchain-Based Data Acquisition (BDA) scheme with privacy protection to address the data privacy and identity authentication problems in the UAV-assisted data acquisition scenario. Each UAV cluster has an… More >

  • Open Access

    ARTICLE

    An Adaptive Parameter-Free Optimal Number of Market Segments Estimation Algorithm Based on a New Internal Validity Index

    Jianfang Qi1, Yue Li1,3, Haibin Jin1, Jianying Feng1, Dong Tian1, Weisong Mu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 197-232, 2023, DOI:10.32604/cmes.2023.026113

    Abstract An appropriate optimal number of market segments (ONS) estimation is essential for an enterprise to achieve successful market segmentation, but at present, there is a serious lack of attention to this issue in market segmentation. In our study, an independent adaptive ONS estimation method BWCON-NSDK-means++ is proposed by integrating a new internal validity index (IVI) Between-Within-Connectivity (BWCON) and a new stable clustering algorithm Natural-SDK-means++ (NSDK-means++) in a novel way. First, to complete the evaluation dimensions of the existing IVIs, we designed a connectivity formula based on the neighbor relationship and proposed the BWCON by integrating the connectivity with other two… More >

  • Open Access

    ARTICLE

    Intelligent Intrusion Detection for Industrial Internet of Things Using Clustering Techniques

    Noura Alenezi, Ahamed Aljuhani*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2899-2915, 2023, DOI:10.32604/csse.2023.036657

    Abstract The rapid growth of the Internet of Things (IoT) in the industrial sector has given rise to a new term: the Industrial Internet of Things (IIoT). The IIoT is a collection of devices, apps, and services that connect physical and virtual worlds to create smart, cost-effective, and scalable systems. Although the IIoT has been implemented and incorporated into a wide range of industrial control systems, maintaining its security and privacy remains a significant concern. In the IIoT contexts, an intrusion detection system (IDS) can be an effective security solution for ensuring data confidentiality, integrity, and availability. In this paper, we… More >

  • Open Access

    ARTICLE

    Adaptive Kernel Firefly Algorithm Based Feature Selection and Q-Learner Machine Learning Models in Cloud

    I. Mettildha Mary1,*, K. Karuppasamy2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2667-2685, 2023, DOI:10.32604/csse.2023.031114

    Abstract CC’s (Cloud Computing) networks are distributed and dynamic as signals appear/disappear or lose significance. MLTs (Machine learning Techniques) train datasets which sometime are inadequate in terms of sample for inferring information. A dynamic strategy, DevMLOps (Development Machine Learning Operations) used in automatic selections and tunings of MLTs result in significant performance differences. But, the scheme has many disadvantages including continuity in training, more samples and training time in feature selections and increased classification execution times. RFEs (Recursive Feature Eliminations) are computationally very expensive in its operations as it traverses through each feature without considering correlations between them. This problem can… More >

  • Open Access

    ARTICLE

    Quantum Cat Swarm Optimization Based Clustering with Intrusion Detection Technique for Future Internet of Things Environment

    Mohammed Basheri, Mahmoud Ragab*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3783-3798, 2023, DOI:10.32604/csse.2023.037130

    Abstract The Internet of Things (IoT) is one of the emergent technologies with advanced developments in several applications like creating smart environments, enabling Industry 4.0, etc. As IoT devices operate via an inbuilt and limited power supply, the effective utilization of available energy plays a vital role in designing the IoT environment. At the same time, the communication of IoT devices in wireless mediums poses security as a challenging issue. Recently, intrusion detection systems (IDS) have paved the way to detect the presence of intrusions in the IoT environment. With this motivation, this article introduces a novel Quantum Cat Swarm Optimization… More >

  • Open Access

    ARTICLE

    Blockchain with Explainable Artificial Intelligence Driven Intrusion Detection for Clustered IoT Driven Ubiquitous Computing System

    Reda Salama1, Mahmoud Ragab1,2,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2917-2932, 2023, DOI:10.32604/csse.2023.037016

    Abstract In the Internet of Things (IoT) based system, the multi-level client’s requirements can be fulfilled by incorporating communication technologies with distributed homogeneous networks called ubiquitous computing systems (UCS). The UCS necessitates heterogeneity, management level, and data transmission for distributed users. Simultaneously, security remains a major issue in the IoT-driven UCS. Besides, energy-limited IoT devices need an effective clustering strategy for optimal energy utilization. The recent developments of explainable artificial intelligence (XAI) concepts can be employed to effectively design intrusion detection systems (IDS) for accomplishing security in UCS. In this view, this study designs a novel Blockchain with Explainable Artificial Intelligence… More >

Displaying 1-10 on page 1 of 403. Per Page  

Share Link