Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Machine Learning Based Resource Allocation of Cloud Computing in Auction

    Jixian Zhang1, Ning Xie1, Xuejie Zhang1, Kun Yue1, Weidong Li2,*, Deepesh Kumar3

    CMC-Computers, Materials & Continua, Vol.56, No.1, pp. 123-135, 2018, DOI:10.3970/cmc.2018.03728

    Abstract Resource allocation in auctions is a challenging problem for cloud computing. However, the resource allocation problem is NP-hard and cannot be solved in polynomial time. The existing studies mainly use approximate algorithms such as PTAS or heuristic algorithms to determine a feasible solution; however, these algorithms have the disadvantages of low computational efficiency or low allocate accuracy. In this paper, we use the classification of machine learning to model and analyze the multi-dimensional cloud resource allocation problem and propose two resource allocation prediction algorithms based on linear and logistic regressions. By learning a small-scale training More >

Displaying 1-10 on page 1 of 1. Per Page