Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Strategy of Signal Detection for Performance Improvement in Clipping Based OFDM System

    Jae-Hyun Ro1, Won-Seok Lee1, Min-Goo Kang2, Dae-Ki Hong3, Hyoung-Kyu Song1, *

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 181-191, 2020, DOI:10.32604/cmc.2020.09998 - 20 May 2020

    Abstract In this paper, the supervised Deep Neural Network (DNN) based signal detection is analyzed for combating with nonlinear distortions efficiently and improving error performances in clipping based Orthogonal Frequency Division Multiplexing (OFDM) ssystem. One of the main disadvantages for the OFDM is the high Peak to Average Power Ratio (PAPR). The clipping is a simple method for the PAPR reduction. However, an effect of the clipping is nonlinear distortion, and estimations for transmitting symbols are difficult despite a Maximum Likelihood (ML) detection at the receiver. The DNN based online signal detection uses the offline learning More >

Displaying 1-10 on page 1 of 1. Per Page