Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Novel Classification Method with Cubic Spline Interpolation

    Husam Ali Abdulmohsin1,*, Hala Bahjat Abdul Wahab2, Abdul Mohssen Jaber Abdul Hossen3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 339-355, 2022, DOI:10.32604/iasc.2022.018045 - 03 September 2021

    Abstract Classification is the last, and usually the most time-consuming step in recognition. Most recently proposed classification algorithms have adopted machine learning (ML) as the main classification approach, regardless of time consumption. This study proposes a statistical feature classification cubic spline interpolation (FC-CSI) algorithm to classify emotions in speech using a curve fitting technique. FC-CSI is utilized in a speech emotion recognition system (SERS). The idea is to sketch the cubic spline interpolation (CSI) for each audio file in a dataset and the mean cubic spline interpolations (MCSIs) representing each emotion in the dataset. CSI interpolation… More >

  • Open Access

    ARTICLE

    A Comprehensive Investigation of Machine Learning Feature Extraction and Classification Methods for Automated Diagnosis of COVID-19 Based on X-ray Images

    Mazin Abed Mohammed1, Karrar Hameed Abdulkareem2, Begonya Garcia-Zapirain3, Salama A. Mostafa4, Mashael S. Maashi5, Alaa S. Al-Waisy1, Mohammed Ahmed Subhi6, Ammar Awad Mutlag7, Dac-Nhuong Le8,9,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3289-3310, 2021, DOI:10.32604/cmc.2021.012874 - 28 December 2020

    Abstract The quick spread of the Coronavirus Disease (COVID-19) infection around the world considered a real danger for global health. The biological structure and symptoms of COVID-19 are similar to other viral chest maladies, which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease. In this study, an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods (e.g., artificial neural network (ANN), support vector machine (SVM), linear kernel and radial… More >

  • Open Access

    ARTICLE

    Review of Text Classification Methods on Deep Learning

    Hongping Wu1, Yuling Liu1, *, Jingwen Wang2

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1309-1321, 2020, DOI:10.32604/cmc.2020.010172 - 30 April 2020

    Abstract Text classification has always been an increasingly crucial topic in natural language processing. Traditional text classification methods based on machine learning have many disadvantages such as dimension explosion, data sparsity, limited generalization ability and so on. Based on deep learning text classification, this paper presents an extensive study on the text classification models including Convolutional Neural Network-Based (CNN-Based), Recurrent Neural Network-Based (RNN-based), Attention Mechanisms-Based and so on. Many studies have proved that text classification methods based on deep learning outperform the traditional methods when processing large-scale and complex datasets. The main reasons are text classification More >

Displaying 1-10 on page 1 of 3. Per Page