Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (902)
  • Open Access

    ARTICLE

    Iris Recognition Based on Multilevel Thresholding Technique and Modified Fuzzy c-Means Algorithm

    Slim Ben Chaabane1,2,*, Rafika Harrabi1,2, Anas Bushnag1, Hassene Seddik2

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 201-214, 2022, DOI:10.32604/jai.2022.032850

    Abstract Biometrics represents the technology for measuring the characteristics of the human body. Biometric authentication currently allows for secure, easy, and fast access by recognizing a person based on facial, voice, and fingerprint traits. Iris authentication is one of the essential biometric methods for identifying a person. This authentication type has become popular in research and practical applications. Unlike the face and hands, the iris is an internal organ, protected and therefore less likely to be damaged. However, the number of helpful information collected from the iris is much greater than the other biometric human organs. This work proposes a new… More >

  • Open Access

    ARTICLE

    Le vandalisme dans l’information géographique volontaire

    Du concept à la détection non supervisée d’anomalie

    Quy Thy Truong1 , Guillaume Touya2, Cyril de Runz3

    Revue Internationale de Géomatique, Vol.29, No.1, pp. 31-56, 2019, DOI:10.3166/rig.2019.00073

    Abstract Since vandalism is a serious matter for the quality of Volunteered Geographic Information, this paper aims at exploring machine learning techniques that enable its detection. First, a focus on the various definitions of vandalism highlights the complexity of this concept. This focus comprises a case study on proven vandals in OpenStreetMap (OSM). Second, we present an experimental vandalism detection on OSM data using a clustering-based outlier detection. The analysis of initial results leads to a discussion about the construction of an OSM vandalism corpus that would be useful in a supervised learning context.

    RÉSUMÉ
    Dans un contexte où le vandalisme de… More >

  • Open Access

    ARTICLE

    Classification d’aires de dispersion à l’aide d’un facteur géographique

    Application à la dialectologie

    Clément Chagnaud1,3, Philippe Garat2, Paule-Annick Davoine1,3, Guylaine Brun-Trigaud4

    Revue Internationale de Géomatique, Vol.30, No.1, pp. 67-83, 2020, DOI:10.3166/rig.2020.00107

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Optimizing Spatial Relationships in GCN to Improve the Classification Accuracy of Remote Sensing Images

    Zimeng Yang, Qiulan Wu, Feng Zhang*, Xuefei Chen, Weiqiang Wang, Xueshen Zhang

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 491-506, 2023, DOI:10.32604/iasc.2023.037558

    Abstract Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation. With the continuous development of artificial intelligence technology, the use of deep learning methods for interpreting remote-sensing images has matured. Existing neural networks disregard the spatial relationship between two targets in remote sensing images. Semantic segmentation models that combine convolutional neural networks (CNNs) and graph convolutional neural networks (GCNs) cause a lack of feature boundaries, which leads to the unsatisfactory segmentation of various target feature boundaries. In this paper, we propose a new semantic segmentation model for remote sensing images (called DGCN hereinafter),… More >

  • Open Access

    ARTICLE

    Fake News Encoder Classifier (FNEC) for Online Published News Related to COVID-19 Vaccines

    Asma Qaiser1, Saman Hina1, Abdul Karim Kazi1,*, Saad Ahmed2, Raheela Asif3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 73-90, 2023, DOI:10.32604/iasc.2023.036784

    Abstract In the past few years, social media and online news platforms have played an essential role in distributing news content rapidly. Consequently. verification of the authenticity of news has become a major challenge. During the COVID-19 outbreak, misinformation and fake news were major sources of confusion and insecurity among the general public. In the first quarter of the year 2020, around 800 people died due to fake news relevant to COVID-19. The major goal of this research was to discover the best learning model for achieving high accuracy and performance. A novel case study of the Fake News Classification using… More >

  • Open Access

    ARTICLE

    MTC: A Multi-Task Model for Encrypted Network Traffic Classification Based on Transformer and 1D-CNN

    Kaiyue Wang1, Jian Gao1,2,*, Xinyan Lei1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 619-638, 2023, DOI:10.32604/iasc.2023.036701

    Abstract Traffic characterization (e.g., chat, video) and application identification (e.g., FTP, Facebook) are two of the more crucial jobs in encrypted network traffic classification. These two activities are typically carried out separately by existing systems using separate models, significantly adding to the difficulty of network administration. Convolutional Neural Network (CNN) and Transformer are deep learning-based approaches for network traffic classification. CNN is good at extracting local features while ignoring long-distance information from the network traffic sequence, and Transformer can capture long-distance feature dependencies while ignoring local details. Based on these characteristics, a multi-task learning model that combines Transformer and 1D-CNN for… More >

  • Open Access

    ARTICLE

    CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification

    R. D. Dhaniya1, K. M. Umamaheswari2,*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1129-1143, 2023, DOI:10.32604/iasc.2023.035905

    Abstract Current revelations in medical imaging have seen a slew of computer-aided diagnostic (CAD) tools for radiologists developed. Brain tumor classification is essential for radiologists to fully support and better interpret magnetic resonance imaging (MRI). In this work, we reported on new observations based on binary brain tumor categorization using HYBRID CNN-LSTM. Initially, the collected image is pre-processed and augmented using the following steps such as rotation, cropping, zooming, CLAHE (Contrast Limited Adaptive Histogram Equalization), and Random Rotation with panoramic stitching (RRPS). Then, a method called particle swarm optimization (PSO) is used to segment tumor regions in an MR image. After… More >

  • Open Access

    ARTICLE

    Cancer Regions in Mammogram Images Using ANFIS Classifier Based Probability Histogram Segmentation Algorithm

    V. Swetha*, G. Vadivu

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 707-726, 2023, DOI:10.32604/iasc.2023.035483

    Abstract Every year, the number of women affected by breast tumors is increasing worldwide. Hence, detecting and segmenting the cancer regions in mammogram images is important to prevent death in women patients due to breast cancer. The conventional methods obtained low sensitivity and specificity with cancer region segmentation accuracy. The high-resolution standard mammogram images were supported by conventional methods as one of the main drawbacks. The conventional methods mostly segmented the cancer regions in mammogram images concerning their exterior pixel boundaries. These drawbacks are resolved by the proposed cancer region detection methods stated in this paper. The mammogram images are classified… More >

  • Open Access

    ARTICLE

    Modified Sine Cosine Optimization with Adaptive Deep Belief Network for Movie Review Classification

    Hala J. Alshahrani1, Abdulbaset Gaddah2, Ehab S. Alnuzaili3, Mesfer Al Duhayyim4,*, Heba Mohsen5, Ishfaq Yaseen6, Amgad Atta Abdelmageed6, Gouse Pasha Mohammed6

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 283-300, 2023, DOI:10.32604/iasc.2023.035334

    Abstract Sentiment analysis (SA) is a growing field at the intersection of computer science and computational linguistics that endeavors to automatically identify the sentiment presented in text. Computational linguistics aims to describe the fundamental methods utilized in the formation of computer methods for understanding natural language. Sentiment is classified as a negative or positive assessment articulated through language. SA can be commonly used for the movie review classification that involves the automatic determination that a review posted online (of a movie) can be negative or positive toward the thing that has been reviewed. Deep learning (DL) is becoming a powerful machine… More >

  • Open Access

    ARTICLE

    Meta-Heuristic Optimized Hybrid Wavelet Features for Arrhythmia Classification

    S. R. Deepa1, M. Subramoniam2,*, R. Swarnalatha3, S. Poornapushpakala2, S. Barani2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 745-761, 2023, DOI:10.32604/iasc.2023.034211

    Abstract The non-invasive evaluation of the heart through EectroCardioGraphy (ECG) has played a key role in detecting heart disease. The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them. Thus, a computerized system is needed to classify ECG signals with more accurate results effectively. Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths. In this work, a Computerized Abnormal Heart Rhythms Detection (CAHRD) system is developed using ECG signals. It consists of four stages; preprocessing, feature extraction, feature optimization and classifier. At first, Pan and Tompkins algorithm is employed to… More >

Displaying 1-10 on page 1 of 902. Per Page  

Share Link