Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A U-Shaped Network-Based Grid Tagging Model for Chinese Named Entity Recognition

    Yan Xiang1,2, Xuedong Zhao1,2, Junjun Guo1,2,*, Zhiliang Shi3, Enbang Chen3, Xiaobo Zhang3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4149-4167, 2024, DOI:10.32604/cmc.2024.050229 - 20 June 2024

    Abstract Chinese named entity recognition (CNER) has received widespread attention as an important task of Chinese information extraction. Most previous research has focused on individually studying flat CNER, overlapped CNER, or discontinuous CNER. However, a unified CNER is often needed in real-world scenarios. Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER. Nevertheless, how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge. In this study, we enhance the character-pair grid representation… More >

  • Open Access

    ARTICLE

    SciCN: A Scientific Dataset for Chinese Named Entity Recognition

    Jing Yang, Bin Ji, Shasha Li*, Jun Ma, Jie Yu

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4303-4315, 2024, DOI:10.32604/cmc.2023.035594 - 26 March 2024

    Abstract Named entity recognition (NER) is a fundamental task of information extraction (IE), and it has attracted considerable research attention in recent years. The abundant annotated English NER datasets have significantly promoted the NER research in the English field. By contrast, much fewer efforts are made to the Chinese NER research, especially in the scientific domain, due to the scarcity of Chinese NER datasets. To alleviate this problem, we present a Chinese scientific NER dataset–SciCN, which contains entity annotations of titles and abstracts derived from 3,500 scientific papers. We manually annotate a total of 62,059 entities,… More >

Displaying 1-10 on page 1 of 2. Per Page