Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    AI-Powered Image Security: Utilizing Autoencoders for Advanced Medical Image Encryption

    Fehaid Alqahtani*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1709-1724, 2024, DOI:10.32604/cmes.2024.054976 - 27 September 2024

    Abstract With the rapid advancement in artificial intelligence (AI) and its application in the Internet of Things (IoT), intelligent technologies are being introduced in the medical field, giving rise to smart healthcare systems. The medical imaging data contains sensitive information, which can easily be stolen or tampered with, necessitating secure encryption schemes designed specifically to protect these images. This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images. The proposed scheme utilizes an artificial intelligence-based autoencoder to compress high-resolution medical images and to facilitate fast encryption… More >

  • Open Access

    ARTICLE

    A Non-Intrusive Stochastic Phase-Field for Fatigue Fracture in Brittle Materials with Uncertainty in Geometry and Material Properties

    Rajan Aravind1,2, Sundararajan Natarajan1, Krishnankutty Jayakumar2, Ratna Kumar Annabattula1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 997-1032, 2024, DOI:10.32604/cmes.2024.053047 - 27 September 2024

    Abstract Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications. This is all the more important when elements composed of brittle materials are exposed to dynamic environments, resulting in catastrophic fatigue failures. The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables. Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the… More >

  • Open Access

    ARTICLE

    Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation

    Shujing Li, Zhangfei Li, Wenhui Cheng, Chenyang Qi, Linguo Li*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2049-2063, 2024, DOI:10.32604/cmc.2024.051928 - 15 August 2024

    Abstract To enhance the diversity and distribution uniformity of initial population, as well as to avoid local extrema in the Chimp Optimization Algorithm (CHOA), this paper improves the CHOA based on chaos initialization and Cauchy mutation. First, Sin chaos is introduced to improve the random population initialization scheme of the CHOA, which not only guarantees the diversity of the population, but also enhances the distribution uniformity of the initial population. Next, Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position (threshold) updating to avoid the CHOA falling More >

  • Open Access

    ARTICLE

    Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms

    Maie Aboghazalah1,*, Passent El-kafrawy2, Abdelmoty M. Ahmed3, Rasha Elnemr5, Belgacem Bouallegue3, Ayman El-sayed4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3855-3875, 2024, DOI:10.32604/cmc.2023.039936 - 20 June 2024

    Abstract Heart monitoring improves life quality. Electrocardiograms (ECGs or EKGs) detect heart irregularities. Machine learning algorithms can create a few ECG diagnosis processing methods. The first method uses raw ECG and time-series data. The second method classifies the ECG by patient experience. The third technique translates ECG impulses into Q waves, R waves and S waves (QRS) features using richer information. Because ECG signals vary naturally between humans and activities, we will combine the three feature selection methods to improve classification accuracy and diagnosis. Classifications using all three approaches have not been examined till now. Several More >

  • Open Access

    ARTICLE

    Sensitivity Analysis of Electromagnetic Scattering from Dielectric Targets with Polynomial Chaos Expansion and Method of Moments

    Yujing Ma1,4, Zhongwang Wang2, Jieyuan Zhang3, Ruijin Huo1,4, Xiaohui Yuan1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2079-2102, 2024, DOI:10.32604/cmes.2024.048488 - 20 May 2024

    Abstract In this paper, an adaptive polynomial chaos expansion method (PCE) based on the method of moments (MoM) is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis. The MoM is applied to accurately solve the electric field integral equation (EFIE) of electromagnetic scattering from homogeneous dielectric targets. Within the bistatic radar cross section (RCS) as the research object, the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model. The corresponding sensitivity results are given by the further derivative operation, which is compared with those of More >

  • Open Access

    PROCEEDINGS

    The Method of Moments for Electromagnetic Scattering Analysis Accelerated by the Polynomial Chaos Expansion in Infinite Domains

    Yujing Ma1,*, Leilei Chen2,3, Haojie Lian3,4, Zhongwang Wang2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.28, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010585

    Abstract An efficient method of moments (MoM) based on polynomial chaos expansion(PCE) is applied to quickly calculate the electromagnetic scattering problems. The triangle basic functions are used to discretize the surface integral equations. The PCE is utilized to accelerate the MoM by constructing a surrogate model for univariate and bivariate analysis[1]. The mathematical expressions of the surrogate model for the radar cross-section (RCS) are established by considering uncertain parameters such as bistatic angle, incident frequency, and dielectric constant[2,3]. By using the example of a scattering cylinder with analytical solution, it is verified that the MoM accelerated More >

  • Open Access

    ARTICLE

    An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction

    Xiang Wang1, Liangsa Wang2,*, Han Li1, Yibin Guo1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2935-2969, 2023, DOI:10.32604/cmc.2023.044948 - 26 December 2023

    Abstract The original whale optimization algorithm (WOA) has a low initial population quality and tends to converge to local optimal solutions. To address these challenges, this paper introduces an improved whale optimization algorithm called OLCHWOA, incorporating a chaos mechanism and an opposition-based learning strategy. This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase, thereby enhancing the quality of the initial whale population. Additionally, including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations. The work and contributions of this paper are primarily reflected in two aspects.… More >

  • Open Access

    ARTICLE

    A New S-Box Design System for Data Encryption Using Artificial Bee Colony Algorithm

    Yazeed Yasin Ghadi1, Mohammed S. Alshehri2, Sultan Almakdi2, Oumaima Saidani3,*, Nazik Alturki3, Fawad Masood4, Muhammad Shahbaz Khan5

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 781-797, 2023, DOI:10.32604/cmc.2023.042777 - 31 October 2023

    Abstract Securing digital image data is a key concern in today’s information-driven society. Effective encryption techniques are required to protect sensitive image data, with the Substitution-box (S-box) often playing a pivotal role in many symmetric encryption systems. This study introduces an innovative approach to creating S-boxes for encryption algorithms. The proposed S-boxes are tested for validity and non-linearity by incorporating them into an image encryption scheme. The nonlinearity measure of the proposed S-boxes is 112. These qualities significantly enhance its resistance to common cryptographic attacks, ensuring high image data security. Furthermore, to assess the robustness of… More >

  • Open Access

    ARTICLE

    A Novel Approach for Image Encryption with Chaos-RNA

    Yan Hong1,2, Shihui Fang2,*, Jingming Su2, Wanqiu Xu2, Yuhao Wei2, Juan Wu2, Zhen Yang1,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 139-160, 2023, DOI:10.32604/cmc.2023.043424 - 31 October 2023

    Abstract In today’s information society, image encryption technology is crucial to protecting Internet security. However, traditional image encryption algorithms have problems such as insufficient chaotic characteristics, insufficient randomness of keys, and insecure Ribonucleic Acid (RNA) encoding. To address these issues, a chaos-RNA encryption scheme that combines chaotic maps and RNA encoding was proposed in this research. The initial values and parameters of the chaotic system are first generated using the Secure Hash Algorithm 384 (SHA-384) function and the plaintext image. Next, the Lü hyperchaotic system sequence was introduced to change the image’s pixel values to realize… More > Graphic Abstract

    A Novel Approach for Image Encryption with Chaos-RNA

  • Open Access

    PROCEEDINGS

    Robust Shape Optimization of Sound Barriers Based on Isogeometric Boundary Element Method and Polynomial Chaos Expansion

    Xuhang Lin1, Haibo Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09388

    Abstract As an important and useful tool for reducing noise, the sound barrier is of practical significance. The sound barrier has different noise reduction effects for different sizes, shapes and properties of the sound absorbing material. Liu et al. [1] have performed shape optimization of sound barriers by using isogeometric boundary element method and method of moving asymptotes (MMA). However, in engineering practice, it is difficult to determine some parameters accurately such as material properties, geometries, external loads. Therefore, it is necessary to consider these uncertainty conditions in order to ensure the rationality of the numerical… More >

Displaying 1-10 on page 1 of 54. Per Page