Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Biochanin A, as the Lrg1/TGF-β/Smad2 pathway blockade, attenuates blood-brain barrier damage after cerebral ischemia-reperfusion by modulating leukocyte migration patterns

    LONGSHENG FU1, JINFANG HU1, FENG SHAO2, YAOQI WU1, WEI BAI3, MINGJIN JIANG3, HAO CHEN4, LIHUA CHEN2, YANNI LV1,*

    BIOCELL, Vol.47, No.8, pp. 1869-1883, 2023, DOI:10.32604/biocell.2023.028602 - 28 August 2023

    Abstract Background: Biochanin A is an excellent dietary isoflavone that has the concomitant function of both medicine and foodstuff. The attenuation function of biochanin A on blood-brain barrier (BBB) damage induced by cerebral ischemia-reperfusion remains unclear. Methods: C57BL/6 mice were subjected to 1 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. The infarct volume of the brain was stained by TTC, while leakage of the brain was quantitatively stained by Evans blue, and the neurologic deficit score was measured. Microglial-induced morphologic changes were observed via immunofluorescence staining, and rolling and adhering leukocytes in… More >

  • Open Access

    ARTICLE

    Exploring the attenuation mechanisms of Dalbergia odorifera leaves extract on cerebral ischemia-reperfusion based on weighted gene co-expression network analysis

    JINFANG HU1,#, JIANGEN AO2,#, LONGSHENG FU1,#, YAOQI WU1, FENG SHAO3, TIANTIAN XU1, MINGJIN JIANG4, SHAOFENG XIONG1, YANNI LV1,*

    BIOCELL, Vol.47, No.7, pp. 1611-1622, 2023, DOI:10.32604/biocell.2023.028684 - 21 June 2023

    Abstract Background: The attenuation function of Dalbergia odorifera leaves on cerebral ischemia-reperfusion (I/R) is little known. The candidate targets for the Chinese herb were extracted from brain tissues through the high-affinity chromatography. The molecular mechanism of D. odorifera leaves on cerebral I/R was investigated. Methods: Serial affinity chromatography based on D. odorifera leaves extract (DLE) affinity matrices were applied to find specific binding proteins in the brain tissues implemented on C57BL/6 mice by intraluminal middle cerebral artery occlusion for 1 h and reperfusion for 24 h. Specific binding proteins were subjected to mass-spectrometry to search for the differentially expressed… More >

  • Open Access

    ARTICLE

    Ginsenoside Rg1 protects against ischemia-induced neuron damage by regulating the rno-miRNA-27a-3p/PPARγ axis

    YUE GUAN1,#, TINGTING ZHANG2,#, JIANAN YU3, JIAWEI LIU4, WENYUAN LI5, YUJIA ZHENG6, JIALE WANG3, YUE LIU3, FENGGUO ZHAI2,7,*

    BIOCELL, Vol.47, No.7, pp. 1583-1594, 2023, DOI:10.32604/biocell.2023.028016 - 21 June 2023

    Abstract Background: A preliminary miRNA screening showed that expression levels of rno-miRNA-27a-3p were significantly increased in the serum and brain tissues of rats undergoing cerebral ischemia. In recent years, there is evidence of the protective capacity of the saponins extracted from panax ginseng and its primary active ingredient ginsenosideRg1oncerebral ischemic injury. Methods: Fetal rat neurons (FRNs) were cultured in glucose-and-serum-free medium and exposed to hypoxia to establish a cerebral ischemia model in vitro (oxygen and glucose deprivation model, OGD). Antioxidant indexes (CAT, SOD), inflammatory markers (MPO, TNF-α and IL-6), and the expression of apoptosis and proliferation associated… More >

  • Open Access

    ARTICLE

    MELLT3 protects against cerebral ischemia-reperfusion (I/R) injury through up-regulation of m6A modification

    JING JIN1,#, XINGHUA WANG2,#, XIAOXIAO ZHENG3, JIAHUA LAN3, LI ZHENG3, YING CAI3, HUI CHEN4, HONGWEI WANG5,*, LIFANG ZHENG6,*

    BIOCELL, Vol.47, No.3, pp. 619-626, 2023, DOI:10.32604/biocell.2023.026016 - 03 January 2023

    Abstract Ischemic cerebrovascular disease is a leading cause of death globally and is often exacerbated by cerebral ischemic/reperfusion injury (CIRI). The exact mechanisms underlying I/R injury are unclear. In this study, we aimed to determine the role of m6A-modified methylase complex methyltransferase-like 3 (METTL3) in cerebral ischemia-reperfusion (I/R) injury. We found that m6A and METTL3 levels increased in OGD/RX-induced mouse astrocytes-cerebellar (MA-C) and the brain of middle cerebral artery occlusion (MCAO) model mice. METTL3 siRNA treatment reduced OGD-RX-induced MAC cell viability and proliferation, which increased with METTL3 over-expression. Flow cytometry analysis showed that silencing METTL3 significantly enhanced More >

  • Open Access

    ARTICLE

    Puerarin inactivates NLRP3-mediated pyroptotic cell death to alleviate cerebral ischemia/reperfusion (I/R) injury through modulating the LncRNA DUXAP8/miR-223-3p axis

    ZHENGUO SHI#,*, QIAOYUN WU#, HAIYAN SHI, SONGTIE YING, LIANG TAO

    BIOCELL, Vol.46, No.4, pp. 979-988, 2022, DOI:10.32604/biocell.2022.015345 - 15 December 2021

    Abstract NLRP3 inflammasome-mediated cell pyroptosis aggravates the development of cerebral ischemia/reperfusion (I/R) injury, and the aim of this study is to investigate the potential utilization of the Chinese medicine, Puerarin, in treating this disease. Through conducting in vitro and in vivo experiments, the present study illustrated that Puerarin regulated LncRNA double homeobox A pseudogene 8 (DUXAP8)/miR-223-3p axis to inactivate NLRP3-mediated pyroptotic cell death, resulting in the attenuation of I/R injury. Specifically, the cerebral I/R injury in rat models and hypoxia/reoxygenation (H/R) in primary hippocampus neuron (PHN) cells were inducted, which were subsequently exposed to Puerarin treatment. As expected,… More >

  • Open Access

    ARTICLE

    The neuroprotection of electro-acupuncture via the PGC-1α/TFAM pathway in transient focal cerebral ischemia rats

    LUPING YANG1,#, YIJING JIANG2,#, XIAOQIAN YE3,#, YONGMEI YOU2, LING LIN2, JING LIAN2, JUAN LI1, SHANLI YANG2, XIEHUA XUE2

    BIOCELL, Vol.46, No.1, pp. 235-245, 2022, DOI:10.32604/biocell.2022.014997 - 28 September 2021

    Abstract ATP depletion is one of the pathological bases in cerebral ischemia. Electro-acupuncture (EA) is widely used in clinical practice for ischemia. However, the mechanism of EA remains unclear. The purpose of this study was to investigate whether EA could activate the AMPK/PGC-1α/TFAM signaling pathway and, consequently, increase the preservation of ATP in rats with ischemia. In this study, 48 rats were randomly divided into four groups as a sham-operation control group (sham group), a middle cerebral artery occlusion group (MCAO group), an EA group, and an EA group blocked by the AMPK inhibitor compound C… More >

  • Open Access

    ARTICLE

    miR-21-3p alleviates neuronal apoptosis during cerebral ischemiareperfusion injury by targeting SMAD2

    FEI TIAN*, GANG LIU, LINLIN FAN, ZHONGYUN CHEN, YAN LIANG,

    BIOCELL, Vol.45, No.1, pp. 49-56, 2021, DOI:10.32604/biocell.2021.013794 - 26 January 2021

    Abstract Cerebral ischemia is due to the formation of blood clots or embolisms in the brain arteries, which leads to local brain tissue necrosis and neural cell apoptosis. Recent studies have shown that microRNA (miRNA) plays an important regulatory role in the pathological process of ischemic injury. The aim of this study is to investigate the role and the mechanism of miR-21-3p and drosophila mothers against decapentaplegic 2 (SMAD2) in cerebral ischemic reperfusion injured (CIRI) neural cells. The CIRI model was established by oxygen-glucose deprivation and recovery process for N2a cells. The cell viability and the… More >

Displaying 1-10 on page 1 of 7. Per Page