Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    The Effect of Uncaria gambir on Optical Properties and Thermal Stability of CNF/PVA Biocomposite Films

    Remon Lapisa1,2, Anna Niska Fauza1,*, Dieter Rahmadiawan1,3, Krismadinata2, Dori Yuvenda1,2, Randi Purnama Putra1,2, Waskito1, Nandy Putra4, Hairul Abral5

    Journal of Renewable Materials, Vol.12, No.9, pp. 1593-1603, 2024, DOI:10.32604/jrm.2024.053651 - 25 September 2024

    Abstract Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties. Among all types of cellulose materials available, cellulose nanofiber (CNF) has great potential to be utilized in a diverse range of applications, including as a film material. In this study, CNF biocomposite film was prepared by using polyvinyl alcohol (PVA) as a matrix and Uncaria gambir extract as a filler. This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film. The formation of the CNF biocomposite films was confirmed… More >

  • Open Access

    ARTICLE

    Isolation and Characterization of Cellulose Nanofiber (CNF) from Kenaf (Hibiscus cannabinus) Bast through the Chemo-Mechanical Process

    Rudi Dungani1,*, Mohammad Irfan Bakshi2, Tsabita Zahra Hanifa1, Mustika Dewi1, Firda A. Syamani2, Melbi Mahardika2, Widya Fatriasari2,*

    Journal of Renewable Materials, Vol.12, No.6, pp. 1057-1069, 2024, DOI:10.32604/jrm.2024.049342 - 02 August 2024

    Abstract The present work emphasizes the isolation of cellulose nanofiber (CNF) from the kenaf (Hibiscus cannabinus) bast through a chemo-mechanical process. In order to develop high CNF yield with superior properties of CNF for improving compatibility in varied applications this method is proposed. The fiber purification involved pulping and bleaching treatments, whereas mechanical treatment was performed by grinding and high-pressure treatments. The kraft pulping as a delignification method followed by bleaching has successfully removed almost 99% lignin in the fiber with high pulp yield and delignification selectivity. The morphology of the fibers was characterized by scanning electron More > Graphic Abstract

    Isolation and Characterization of Cellulose Nanofiber (CNF) from Kenaf <i>(Hibiscus cannabinus)</i> Bast through the Chemo-Mechanical Process

  • Open Access

    ARTICLE

    Isolation and Characterization of Cellulose Nanofibers from Argentine Tacuara Cane (Guadua Angustifolia Kunth)

    C. A. Rodríguez Ramírez2, Fleur Rol3, Julien Bras3, Alain Dufresne3, Nancy Lis Garcia2,*, Norma D´Accorso1,2,*

    Journal of Renewable Materials, Vol.7, No.4, pp. 373-381, 2019, DOI:10.32604/jrm.2019.04236

    Abstract New trends in the area of material improvement are the use of natural nano-charges from renewable biomass, improving the value and sustainability of our country’s natural products. Bamboo is widely used in many countries of the world, although in Argentina, despite being commercialized and exported for the manufacture of wood floors, it goes unnoticed despite having native species. Therefore, researchers identified the native and exotic species present in our country and are working on novel uses. In this context, it is proposed the Argentine Tacuara Cane (Guadua Angustifolia Kunth), endemic plant as a new source More >

  • Open Access

    ARTICLE

    Green Nanocomposites Made With Polyvinyl Alcohol and Cellulose Nanofibers Isolated From Recycled Paper

    Le Van Hai1,2, Lindong Zhai1, Hyun Chan Kim1, Jung Woong Kim1, Jaehwan Kim1,*

    Journal of Renewable Materials, Vol.7, No.7, pp. 621-629, 2019, DOI:10.32604/jrm.2019.06466

    Abstract This paper reports green nanocomposites made by blending polyvinyl alcohol (PVA) with cellulose nanofiber (CNF) isolated from recycled deinked copy/printing paper (DIP). The reinforcement effect of DIPCNF in the nanocomposites is compared with other CNFs isolated from native cotton and hardwood by means of TEMPO-oxidation. The prepared PVA-CNF nanocomposites are characterized in terms of morphology, chemical interaction, structural, thermal and mechanical properties. X-ray diffraction and Fourier transform infrared spectroscopy confirm the reinforcing ability of cellulose nanofibers into PVA. By blending CNFs into PVA matrix, the thermal stability of the nanocomposites is improved and DIPCNF shows More >

  • Open Access

    ARTICLE

    Vapor and Pressure Sensors Based on Cellulose Nanofibers and Carbon Nanotubes Aerogel with Thermoelectric Properties

    Rajendran Muthuraj, Abhishek Sachan, Mickael Castro*, Jean-François Feller, Bastien Seantier*, Yves Grohens

    Journal of Renewable Materials, Vol.6, No.3, pp. 277-287, 2018, DOI:10.7569/JRM.2017.634182

    Abstract In this work, thermally insulating and electrically conductive aerogels were prepared from cellulose nanofibers (CNF) and carbon nanotubes (CNTs) by environmentally friendly freeze-drying process. The thermal conductivity of neat CNF aerogel is 24 mW/(m·K) with a density of 0.025 g/cm3. With the addition of CNTs into CNF aerogel, the electrical conductivity was significantly increased while the thermal conductivity was increased to 38 mW/(m·K). Due to these interesting properties, the Seebeck coefficient and the figure of merit (ZT) of the CNF/CNTs aerogels were measured and showed that CNF/CNTs aerogel thermoelectric properties can be improved. The compressibility More >

  • Open Access

    ARTICLE

    In Situ Synthesis of Cuprous Oxide/Cellulose Nanofibers Gel and Antibacterial Properties

    Ying Hu1,2, Qinfei Ke1, Zhe Li2, Wanli Han3, Zhiyong Yan2,*

    CMC-Computers, Materials & Continua, Vol.56, No.3, pp. 517-527, 2018, DOI:10.3970/cmc.2018.03608

    Abstract Cellulose nanofibers were synthesized by acetobacter xylinum (xylinum 1.1812). The cellulose nanofibers with 30-90 nm width constructed three-dimension network gel, which could be used as a wound dressing since it can provide moist environment to a wound. However, cellulose nanofibers have no antimicrobial activity to prevent wound infection. To achieve antimicrobial activity, the cellulose nanofibers can load cuprous oxide (Cu2O) particles on the surface. The cuprous oxide is a kind of safe antibacterial material. The copper ions can be reduced into cuprous oxides by reducing agents such as glucose, N2H4 and sodium hypophosphite. The cellulose nanofibers network… More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Poly(butylene succinate) Bionanocomposites Reinforced with Cellulose Nanofiber Extracted from Helicteres isora Plant

    Jithin Joy1,2,3, Cintil Jose3, Srirama B. Varanasi4, Lovely Mathew P.2,3, Sabu Thomas2, Srikanth Pilla1,5*

    Journal of Renewable Materials, Vol.4, No.5, pp. 351-364, 2016, DOI:10.7569/JRM.2016.634128

    Abstract Isora nanofibers (INF) were produced by a combined thermal-chemical-mechanical method from Helicteres isora plant. The resulting fibers were analyzed using transmission electron microscopy and scanning electron microscopy, which showed a network-like structure with a length of 600 nm, width of 50 nm and an aspect ratio of 12. Fourier transform infrared spectroscopy indicated that chemical treatments progressively removed noncellulosic constituents. X-ray diffraction analysis revealed that crystallinity increased with successive chemical treatments. Using the synthesized isora nanofibers, poly(butylene succinate) (PBS)-based biodegradable nanocomposites were prepared. The nanocomposites were processed using a Brabender twin-screw compounder and an injection… More >

Displaying 1-10 on page 1 of 7. Per Page