Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Heart-Net: A Multi-Modal Deep Learning Approach for Diagnosing Cardiovascular Diseases

    Deema Mohammed Alsekait1, Ahmed Younes Shdefat2, Ayman Nabil3, Asif Nawaz4,*, Muhammad Rizwan Rashid Rana4, Zohair Ahmed5, Hanaa Fathi6, Diaa Salama AbdElminaam6,7,8

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3967-3990, 2024, DOI:10.32604/cmc.2024.054591 - 12 September 2024

    Abstract Heart disease remains a leading cause of morbidity and mortality worldwide, highlighting the need for improved diagnostic methods. Traditional diagnostics face limitations such as reliance on single-modality data and vulnerability to apparatus faults, which can reduce accuracy, especially with poor-quality images. Additionally, these methods often require significant time and expertise, making them less accessible in resource-limited settings. Emerging technologies like artificial intelligence and machine learning offer promising solutions by integrating multi-modality data and enhancing diagnostic precision, ultimately improving patient outcomes and reducing healthcare costs. This study introduces Heart-Net, a multi-modal deep learning framework designed to… More >

  • Open Access

    REVIEW

    Therapeutic and regenerative potential of different sources of mesenchymal stem cells for cardiovascular diseases

    YARA ALZGHOUL, HALA J. BANI ISSA, AHMAD K. SANAJLEH, TAQWA ALABDUH, FATIMAH RABABAH, MAHA AL-SHDAIFAT, EJLAL ABU-EL-RUB*, FATIMAH ALMAHASNEH, RAMADA R. KHASAWNEH, AYMAN ALZU’BI, HUTHAIFA MAGABLEH

    BIOCELL, Vol.48, No.4, pp. 559-569, 2024, DOI:10.32604/biocell.2024.048056 - 09 April 2024

    Abstract Mesenchymal stem cells (MSCs) are ideal candidates for treating many cardiovascular diseases. MSCs can modify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities, which are essential to restore heart function. MSCs can be easily isolated from different sources, including bone marrow, adipose tissues, umbilical cord, and dental pulp. MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders. In this review, we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function. More >

  • Open Access

    ARTICLE

    Multi Head Deep Neural Network Prediction Methodology for High-Risk Cardiovascular Disease on Diabetes Mellitus

    B. Ramesh, Kuruva Lakshmanna*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2513-2528, 2023, DOI:10.32604/cmes.2023.028944 - 03 August 2023

    Abstract Major chronic diseases such as Cardiovascular Disease (CVD), diabetes, and cancer impose a significant burden on people and healthcare systems around the globe. Recently, Deep Learning (DL) has shown great potential for the development of intelligent mobile Health (mHealth) interventions for chronic diseases that could revolutionize the delivery of health care anytime, anywhere. The aim of this study is to present a systematic review of studies that have used DL based on mHealth data for the diagnosis, prognosis, management, and treatment of major chronic diseases and advance our understanding of the progress made in this… More > Graphic Abstract

    Multi Head Deep Neural Network Prediction Methodology for High-Risk Cardiovascular Disease on Diabetes Mellitus

  • Open Access

    ARTICLE

    Probability Based Regression Analysis for the Prediction of Cardiovascular Diseases

    Wasif Akbar1, Adbul Mannan2, Qaisar Shaheen3,*, Mohammad Hijji4, Muhammad Anwar5, Muhammad Ayaz6

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6269-6286, 2023, DOI:10.32604/cmc.2023.036141 - 29 April 2023

    Abstract Machine Learning (ML) has changed clinical diagnostic procedures drastically. Especially in Cardiovascular Diseases (CVD), the use of ML is indispensable to reducing human errors. Enormous studies focused on disease prediction but depending on multiple parameters, further investigations are required to upgrade the clinical procedures. Multi-layered implementation of ML also called Deep Learning (DL) has unfolded new horizons in the field of clinical diagnostics. DL formulates reliable accuracy with big datasets but the reverse is the case with small datasets. This paper proposed a novel method that deals with the issue of less data dimensionality. Inspired… More >

  • Open Access

    ARTICLE

    An Intelligent Cardiovascular Diseases Prediction System Focused on Privacy

    Manjur Kolhar*, Mohammed Misfer

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 529-542, 2023, DOI:10.32604/iasc.2023.030098 - 29 September 2022

    Abstract Machine learning (ML) and cloud computing have now evolved to the point where they are able to be used effectively. Further improvement, however, is required when both of these technologies are combined to reap maximum benefits. A way of improving the system is by enabling healthcare workers to select appropriate machine learning algorithms for prediction and, secondly, by preserving the privacy of patient data so that it cannot be misused. The purpose of this paper is to combine these promising technologies to maintain the privacy of patient data during the disease prediction process. Treatment of… More >

  • Open Access

    ARTICLE

    Handling High Dimensionality in Ensemble Learning for Arrhythmia Prediction

    Fuad Ali Mohammed Al-Yarimi*

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1729-1742, 2022, DOI:10.32604/iasc.2022.022418 - 09 December 2021

    Abstract Computer-aided arrhythmia prediction from ECG (electrocardiograms) is essential in clinical practices, which promises to reduce the mortality caused by inexperienced clinical practitioners. Moreover, computer-aided methods often succeed in the early detection of arrhythmia scope from electrocardiogram reports. Machine learning is the buzz of computer-aided clinical practices. Particularly, computer-aided arrhythmia prediction methods highly adopted machine learning methods. However, the high dimensionality in feature values considered for the machine learning models’ training phase often causes false alarming. This manuscript addressed the high dimensionality in the learning phase and proposed an (Ensemble Learning method for Arrhythmia Prediction) ELAP… More >

  • Open Access

    ARTICLE

    Heart Failure Patient Survival Analysis with Multi Kernel Support Vector Machine

    R. Sujatha1, Jyotir Moy Chatterjee2, NZ Jhanjhi3, Thamer A. Tabbakh4, Zahrah A. Almusaylim5,*

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 115-129, 2022, DOI:10.32604/iasc.2022.019133 - 26 October 2021

    Abstract Heart failure (HF) is an intercontinental pandemic influencing in any event 26 million individuals globally and is expanding in commonness. HF healthiness consumptions are extensive and will increment significantly with a maturing populace. As per the World Health Organization (WHO), Cardiovascular diseases (CVDs) are the major reason for all-inclusive death, taking an expected 17.9 million lives per year. CVDs are a class of issues of the heart, blood vessels and include coronary heart sickness, cerebrovascular illness, rheumatic heart malady, and various other conditions. In the medical care industry, a lot of information is as often… More >

  • Open Access

    REVIEW

    Mechano-Sensing and shear stress-shielding by endothelial primary cilia: structure, composition, and function

    HUAN YIN1, LIZHEN WANG1, YUBO FAN1, BINGMEI M. FU1,2,*

    BIOCELL, Vol.45, No.5, pp. 1187-1199, 2021, DOI:10.32604/biocell.2021.016650 - 12 July 2021

    Abstract Primary cilium is an antenna-like and non-motile structure protruding from the apical surface of most mammalian cells including endothelial cells lining the inner side of all the blood vessels in our body. Although it has been over a century since primary cilia were discovered, the investigation about their mechano-sensing and other roles in maintaining normal functions of cardiovascular system has just started in recent years. This focused review aims to give an update about the current literature for the role of endothelial primary cilia in blood flow mechano-sensing and shear stress-shielding. To do this, we… More >

  • Open Access

    ARTICLE

    Smart CardioWatch System for Patients with Cardiovascular Diseases Who Live Alone

    Raisa Nazir Ahmed Kazi1,*, Manjur Kolhar2, Faiza Rizwan2

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1237-1250, 2021, DOI:10.32604/cmc.2020.012707 - 26 November 2020

    Abstract The widespread use of smartwatches has increased their specific and complementary activities in the health sector for patient’s prognosis. In this study, we propose a framework referred to as smart forecasting CardioWatch (SCW) to measure the heart-rate variation (HRV) for patients with myocardial infarction (MI) who live alone or are outside their homes. In this study, HRV is used as a vital alarming sign for patients with MI. The performance of the proposed framework is measured using machine learning and deep learning techniques, namely, support vector machine, logistic regression, and decision-tree classification techniques. The results More >

  • Open Access

    ABSTRACT

    On the Image-Based Non-Invasive Diagnosis of Cardiovascular Diseases

    Peng Wu1,*, Qi Gao2, Runjie Wei3, Hongping Wang3, Lizhong Wang3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 27-28, 2019, DOI:10.32604/mcb.2019.05711

    Abstract Cardiovascular diseases are the leading cause of human deaths worldwide. Traditional diagnostic tools of cardiovascular diseases are either based on 2D static medical images, or invasive, bringing troubles to both patients and doctors. Our team is committed to the development of image-based non-invasive diagnostic system for cardiovascular diseases. We have made progress mainly in the following areas: 1) 4D flow technology for heart and large blood vessels. According to MRI 4D Flow data, three-dimensional velocity fields within blood vessels were constructed. Divergence-fee smoothing (DFS) was proposed to eliminate the high frequency noise in the hemodynamic… More >

Displaying 1-10 on page 1 of 11. Per Page