Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    PROCEEDINGS

    Towards High-Fidelity and Efficient Computation for Diagnosis and Treatment of Cardiovascular Disease

    Lei Wang1,*, Blanca Rodriguez2, Xiaoyu Luo3, Charles Augarde4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.013350

    Abstract Cardiovascular disease is the leading cause of death worldwide. Disease-specific software, like FFRct from HeartFlow, and high-fidelity computational models within a general-purpose software, like Living Heart Project within Abaqus, are essential to revolutionise diagnosis and treatment of cardiovascular disease for clinicians and design of medical devices for industries. This talk presents our past researches on computational modelling of tear propagation in the aortic dissection [1-2] and of electromechanical coupling in the human heart with the finite element method [3], and our current exploration on high-fidelity and efficient computation and software development for diagnosis and treatment More >

  • Open Access

    ARTICLE

    Heart-Net: A Multi-Modal Deep Learning Approach for Diagnosing Cardiovascular Diseases

    Deema Mohammed Alsekait1, Ahmed Younes Shdefat2, Ayman Nabil3, Asif Nawaz4,*, Muhammad Rizwan Rashid Rana4, Zohair Ahmed5, Hanaa Fathi6, Diaa Salama AbdElminaam6,7,8

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3967-3990, 2024, DOI:10.32604/cmc.2024.054591 - 12 September 2024

    Abstract Heart disease remains a leading cause of morbidity and mortality worldwide, highlighting the need for improved diagnostic methods. Traditional diagnostics face limitations such as reliance on single-modality data and vulnerability to apparatus faults, which can reduce accuracy, especially with poor-quality images. Additionally, these methods often require significant time and expertise, making them less accessible in resource-limited settings. Emerging technologies like artificial intelligence and machine learning offer promising solutions by integrating multi-modality data and enhancing diagnostic precision, ultimately improving patient outcomes and reducing healthcare costs. This study introduces Heart-Net, a multi-modal deep learning framework designed to… More >

  • Open Access

    ARTICLE

    Improving Prediction Efficiency of Machine Learning Models for Cardiovascular Disease in IoST-Based Systems through Hyperparameter Optimization

    Tajim Md. Niamat Ullah Akhund1,2,*, Waleed M. Al-Nuwaiser3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3485-3506, 2024, DOI:10.32604/cmc.2024.054222 - 12 September 2024

    Abstract This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST (Internet of Sensing Things) device. Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning. Significant improvements were observed across various models, with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score, recall, and precision. The study underscores the critical role of tailored hyperparameter tuning in optimizing these models, revealing diverse outcomes among algorithms. Decision Trees and Random Forests exhibited stable performance throughout the evaluation. While More >

  • Open Access

    ARTICLE

    Cardiovascular Disease Prediction Using Risk Factors: A Comparative Performance Analysis of Machine Learning Models

    Adil Hussain1,*, Ayesha Aslam2

    Journal on Artificial Intelligence, Vol.6, pp. 129-152, 2024, DOI:10.32604/jai.2024.050277 - 21 May 2024

    Abstract The diagnosis and prognosis of cardiovascular diseases are critical medical responsibilities that assist cardiologists in correctly classifying patients and treating them accordingly. The utilization of machine learning in the medical domain has witnessed a notable surge due to its ability to discern patterns from vast amounts of data. Machine learning algorithms that can categorize cases of cardiovascular illness may help doctors reduce the number of wrong diagnoses. This research investigates the efficacy of different machine learning algorithms in predicting cardiovascular disease in accordance with risk factors. This study utilizes a variety of machine learning models, More >

  • Open Access

    REVIEW

    Therapeutic and regenerative potential of different sources of mesenchymal stem cells for cardiovascular diseases

    YARA ALZGHOUL, HALA J. BANI ISSA, AHMAD K. SANAJLEH, TAQWA ALABDUH, FATIMAH RABABAH, MAHA AL-SHDAIFAT, EJLAL ABU-EL-RUB*, FATIMAH ALMAHASNEH, RAMADA R. KHASAWNEH, AYMAN ALZU’BI, HUTHAIFA MAGABLEH

    BIOCELL, Vol.48, No.4, pp. 559-569, 2024, DOI:10.32604/biocell.2024.048056 - 09 April 2024

    Abstract Mesenchymal stem cells (MSCs) are ideal candidates for treating many cardiovascular diseases. MSCs can modify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities, which are essential to restore heart function. MSCs can be easily isolated from different sources, including bone marrow, adipose tissues, umbilical cord, and dental pulp. MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders. In this review, we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function. More >

  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427 - 27 February 2024

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has… More >

  • Open Access

    ARTICLE

    Machine Learning-Based Decision-Making Mechanism for Risk Assessment of Cardiovascular Disease

    Cheng Wang1, Haoran Zhu2,*, Congjun Rao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 691-718, 2024, DOI:10.32604/cmes.2023.029258 - 22 September 2023

    Abstract Cardiovascular disease (CVD) has gradually become one of the main causes of harm to the life and health of residents. Exploring the influencing factors and risk assessment methods of CVD has become a general trend. In this paper, a machine learning-based decision-making mechanism for risk assessment of CVD is designed. In this mechanism, the logistics regression analysis method and factor analysis model are used to select age, obesity degree, blood pressure, blood fat, blood sugar, smoking status, drinking status, and exercise status as the main pathogenic factors of CVD, and an index system of risk More >

  • Open Access

    ARTICLE

    Multi Head Deep Neural Network Prediction Methodology for High-Risk Cardiovascular Disease on Diabetes Mellitus

    B. Ramesh, Kuruva Lakshmanna*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2513-2528, 2023, DOI:10.32604/cmes.2023.028944 - 03 August 2023

    Abstract Major chronic diseases such as Cardiovascular Disease (CVD), diabetes, and cancer impose a significant burden on people and healthcare systems around the globe. Recently, Deep Learning (DL) has shown great potential for the development of intelligent mobile Health (mHealth) interventions for chronic diseases that could revolutionize the delivery of health care anytime, anywhere. The aim of this study is to present a systematic review of studies that have used DL based on mHealth data for the diagnosis, prognosis, management, and treatment of major chronic diseases and advance our understanding of the progress made in this… More > Graphic Abstract

    Multi Head Deep Neural Network Prediction Methodology for High-Risk Cardiovascular Disease on Diabetes Mellitus

  • Open Access

    ARTICLE

    Deep Learning Approach for Automatic Cardiovascular Disease Prediction Employing ECG Signals

    Muhammad Tayyeb1, Muhammad Umer1, Khaled Alnowaiser2, Saima Sadiq3, Ala’ Abdulmajid Eshmawi4, Rizwan Majeed5, Abdullah Mohamed6, Houbing Song7, Imran Ashraf8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1677-1694, 2023, DOI:10.32604/cmes.2023.026535 - 26 June 2023

    Abstract Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately. Currently, electrocardiogram (ECG) data is analyzed by medical experts to determine the cardiac abnormality, which is time-consuming. In addition, the diagnosis requires experienced medical experts and is error-prone. However, automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures. This study proposes a simple multilayer perceptron (MLP) model for heart disease prediction to reduce computational complexity. ECG dataset containing averaged signals More >

  • Open Access

    REVIEW

    The role of periodontal disease in atherosclerotic cardiovascular disease

    XIWEI ZHAO1,#, JINSONG WANG1,2,#, YIFAN XU1, JIAN ZHOU5,*, LEI HU1,3,4,*

    BIOCELL, Vol.47, No.7, pp. 1431-1438, 2023, DOI:10.32604/biocell.2023.028217 - 21 June 2023

    Abstract Atherosclerotic cardiovascular disease (ASCVD) includes a group of disorders of the heart and blood vessels and accounts for major morbidity and premature death worldwide. Periodontitis is a chronic inflammatory disease with the gradual destruction of supporting tissues around the teeth, including gingiva, periodontal ligament, alveolar bone, and cementum. Periodontitis has been found to potentially increase the risk of ASCVD. Generally, oral microorganisms and inflammation are the major factors for periodontitis to the incidence of ASCVD. Recently, evidence has shown that the loss of masticatory function is another important factor of periodontitis to the incidence of More > Graphic Abstract

    The role of periodontal disease in atherosclerotic cardiovascular disease

Displaying 1-10 on page 1 of 29. Per Page