Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Boosting Structural and Dielectric Properties of Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Films with Iron-Doped Carbon Quantum Dots for Advanced Applications

    Lekaa K. Abdul Karem1, Badriah Saad Al-Farhan2, Ghada M. G. Eldin3, Samir Kamel4, Ahmed M. Khalil5,*

    Journal of Renewable Materials, Vol.13, No.7, pp. 1459-1473, 2025, DOI:10.32604/jrm.2025.02025-0046 - 22 July 2025

    Abstract In this study, the casting process is used to fabricate modified polyvinyl alcohol (PVA), starch (S), and carboxymethyl cellulose (CMC) polymer blend films (PVA/S/CMC) loaded with various concentrations of iron-doped carbon quantum dots (Fe-CQDs) and denoted as (PVA/S/CMC@Fe-CQDs). A one-step microwave strategy was employed as a facile method to prepare Fe-CQDs. Through a series of characterization techniques, fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) have been used to show the successful integration of Fe-CQDs into the PVA/S/CMC matrix. Loading the synthesized Fe-CQDs to the polymeric matrix significantly enhanced the… More > Graphic Abstract

    Boosting Structural and Dielectric Properties of Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Films with Iron-Doped Carbon Quantum Dots for Advanced Applications

  • Open Access

    ARTICLE

    Amphiphilic Carboxymethyl Cellulose Stearate for Pickering Emulsions and Antimicrobial Activity of Chrysanthemum Essential Oil

    Mohamed El-Sakhawy1,*, Sally A. Abdel-Halim2, Hebat-Allah S. Tohamy1, Hossam M. El-Masry3, Mona Mohamed AbdelMohsen2

    Journal of Renewable Materials, Vol.13, No.5, pp. 981-995, 2025, DOI:10.32604/jrm.2025.02024-0024 - 20 May 2025

    Abstract This study prepared and characterized amphiphilic carboxymethyl cellulose stearate (CMCS) recycled from sugarcane bagasse agro-waste (SB). The Fourier-transform infrared (FTIR) analysis confirmed cellulose, carboxymethyl cellulose (CMC), and CMCS structures, with CMCS showing increased H-bonding. X-ray diffraction analysis (XRD) revealed reduced crystallinity in CMC and CMCS. CMCS exhibited a hydrophobic nature but dispersed in water, enabling nanoemulsion formation. Optimal nanoemulsion was achieved with CMCS1, showing a particle size of 99 nm. Transmission electron microscopy (TEM) images revealed CMC’s honeycomb structure, transforming into spherical particles in CMCS1. Antimicrobial tests demonstrated strong activity of CMCS formulations against Escherichia coli More >

  • Open Access

    ARTICLE

    Plasticized Agar-Carboxymethyl Cellulose Based Composites Properties Reinforced with Nanocellulose

    Vahideh Pourghasemi-Soufiani1, Farid Amidi-Fazli1,2,*

    Journal of Renewable Materials, Vol.13, No.5, pp. 915-929, 2025, DOI:10.32604/jrm.2025.02024-0009 - 20 May 2025

    Abstract Biodegradable packaging has emerged as a viable alternative to non-biodegradable polymers. This study explores different treatments of agar-carboxymethyl cellulose (CMC) nanocomposites developed via the casting method. We investigated the effects of varying glycerol levels (20%–60%) as a plasticizer and nanocellulose levels (0%–30%) as a filler on the properties of agar-CMC nanocomposites. Key properties analyzed included water vapor permeability, solubility in water, moisture absorption, water contact angle, color properties, and mechanical properties. The films exhibited low water vapor permeability, ranging from 2.50 × 10−11 g/msPa to 2.23 × 10−12 g/msPa. Water solubility of the films was below… More > Graphic Abstract

    Plasticized Agar-Carboxymethyl Cellulose Based Composites Properties Reinforced with Nanocellulose

  • Open Access

    ARTICLE

    Conjugate Usage of Experimental for and Theoretical Models Aqua Carboxymethyl Cellulose Nanofluid Flow in Convergent-Divergent Shaped Microchannel

    Shervin Fateh Khanshir1, Saeed Dinarvand2,*, Ramtin Fateh Khanshir3

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 663-684, 2025, DOI:10.32604/fhmt.2025.060559 - 25 April 2025

    Abstract This article aims to model and analyze the heat and fluid flow characteristics of a carboxymethyl cellulose (CMC) nanofluid within a convergent-divergent shaped microchannel (Two-dimensional). The base fluid, water + CMC (0.5%), is mixed with CuO and Al2O3 nanoparticles at volume fractions of 0.5% and 1.5%, respectively. The research is conducted through the conjugate usage of experimental and theoretical models to represent more realistic properties of the non-Newtonian nanofluid. Three types of microchannels including straight, divergent, and convergent are considered, all having the same length and identical inlet cross-sectional area. Using ANSYS FLUENT software, Navier-Stokes equations… More > Graphic Abstract

    Conjugate Usage of Experimental for and Theoretical Models Aqua Carboxymethyl Cellulose Nanofluid Flow in Convergent-Divergent Shaped Microchannel

  • Open Access

    ARTICLE

    Characterization of Carboxymethyl Cellulose Made from Bamboo Harvesting Residues

    Shuangyan Zhang*, Shun Yang, Chuangui Wang, Weiyi Su, Huangfei Lv, Yuanyuan Li

    Journal of Renewable Materials, Vol.10, No.12, pp. 3229-3241, 2022, DOI:10.32604/jrm.2022.020489 - 14 July 2022

    Abstract Bamboo harvesting residues are wastes by-products of bamboo industries that contain holocellulose for about 63.14% to 70.71%, which often be discarded, incinerated or buried. In this study, carboxymethyl cellulose was prepared from bamboo harvesting residues (bamboo-branch and bamboo-tip) as raw materials. The chemical composition of bamboo harvesting residues, the viscosity and degree of substitution of carboxymethyl cellulose were determined. Carboxymethyl cellulose obtained was further characterized and compared by means of FTIR, SEM, XRD and TG. Results showed that under the optimized identical conditions, the viscosity and degree of substitution of carboxymethyl cellulose from bamboo-branch and More > Graphic Abstract

    Characterization of Carboxymethyl Cellulose Made from Bamboo Harvesting Residues

  • Open Access

    ARTICLE

    Synthesis and characterization of polymeric responsive CMC/Pectin hydrogel films loaded with Tamarix aphylla extract as potential wound dressings

    BARKAT ALI KHAN1, FAZAL KARIM1, MUHAMMAD KHALID KHAN1,*, FAHEEM HAIDER1, SADIQULLAH KHAN2

    BIOCELL, Vol.45, No.5, pp. 1273-1285, 2021, DOI:10.32604/biocell.2021.015323 - 12 July 2021

    Abstract The fourth most predominant overwhelming type of trauma is burn injuries worldwide. Ideal wound healing dressings help in the wound healing process in a lower time with less pain. Commonly used dry wound dressing, like absorbent gauze or absorbent cotton, possess limited therapeutic effects and require repeated use, which further exaggerates patients’ suffering. In contrast, hydrogels films present a promising alternative to improve healing by guaranteeing a moisture balance at the wound site. The aim of the current study was to synthesize Tamarix aphylla (T. aphylla) extract-loaded hydrogel film with Na-CMC and pectin and to study their… More >

  • Open Access

    ARTICLE

    Green Synthesis of Silver Nanoparticles Using Plectranthus Amboinicus Leaf Extract for Preparation of CMC/PVA Nanocomposite Film

    Nguyen Thi Thanh Thuy1,*, Le Hoang Huy1, Truong Thuy Vy1, Nguyen Thi Thanh Tam2, Bien Thi Lan Thanh1, Nguyen Thi My Lan3

    Journal of Renewable Materials, Vol.9, No.8, pp. 1393-1411, 2021, DOI:10.32604/jrm.2021.015772 - 08 April 2021

    Abstract In the present study, the biogenic silver nanoparticles have been synthesized using aqueous leaf extract of Plectranthus amboinicus (PA), which acted as both reducing and stabilizing agents. The PA synthesized silver nanoparticles were blended with carboxymethyl cellulose/polyvinyl alcohol (CMC/PVA) biocomposite. The prepared AgNPs as well as the biogenic AgNPs incorporated CMC/PVA films were investigated using UV-visible spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), scanning electron microscope (SEM), and X–ray diffraction (XRD). The DLS results showed that biogenic AgNPs had the average particle size of 65.70 nm with polydispersity index of 0.44. The surface plasmon… More > Graphic Abstract

    Green Synthesis of Silver Nanoparticles Using <i>Plectranthus Amboinicus</i> Leaf Extract for Preparation of CMC/PVA Nanocomposite Film

  • Open Access

    ARTICLE

    Synthesis of Poly(acrylic acid)-Grafted Carboxymethyl Cellulose for Efficient Removal of Copper Ions

    Ying Lin1, Yihua Cao1, Qingping Song1, Jiangang Gao1, Puyou Jia2,*, Hamed Alsulami3, Marwan Amin Kutbi3

    Journal of Renewable Materials, Vol.7, No.12, pp. 1403-1414, 2019, DOI:10.32604/jrm.2019.08380

    Abstract Biocompatible and high content grafted carboxymethyl cellulose-gpoly(acrylic acid) powder was successfully synthesized in an aqueous system, and used as adsorbents for the removal of Cu(II) in aqueous solution. The copolymer was characterized by FT-IR and SEM techniques. Graft copolymerization introduced a large number of carboxyl groups in the polymer and caused the micro-surface of the material to be porous. The fundamental adsorption behaviors of the material were studied. The adsorption kinetics was well fitted with pseudo-second order equation, while the adsorption isotherm preferred to be described the Langmuir equation. The maximum adsorption capacity obtained from More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Eco-friendly Carboxymethyl Cellulose Antimicrobial Nanocomposite Hydrogels

    Sawsan Dacrory1*, Hussein Abou-Yousef1, Ragab E. Abou-Zeid1, Samir Kamel1, Mohamed S. Abdel-Aziz2, Mohamed Elbadry3

    Journal of Renewable Materials, Vol.6, No.5, pp. 536-547, 2018, DOI:10.7569/JRM.2017.634190

    Abstract Carboxymethyl cellulose hydrogels were developed through crosslinking process using eco-friendly crosslinkers such as maleic, succinic, and citric acids. Carboxymethyl cellulose was prepared from the cellulosic fraction of olive industry residues. A series of hydrogels with varying crosslinker acid concentrations, reaction times, and reaction temperatures was produced to study the swelling capacities and gel fraction of the obtained hydrogels. Additional study pertains to the preparation of antimicrobial nanocomposite hydrogels through in-situ incorporation of the silver nanoparticles during the crosslinking reaction. Silver nanoparticles were prepared by reduction of AgNO3with leaves of Ricinus communis. The particle size of More >

Displaying 1-10 on page 1 of 9. Per Page