Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    A New Scheme of the ARA Transform for Solving Fractional-Order Waves-Like Equations Involving Variable Coefficients

    Yu-Ming Chu1, Sobia Sultana2, Shazia Karim3, Saima Rashid4,*, Mohammed Shaaf Alharthi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 761-791, 2024, DOI:10.32604/cmes.2023.028600 - 22 September 2023

    Abstract The goal of this research is to develop a new, simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations (PDEs) with variable coefficient. ARA-transform is a robust and highly flexible generalization that unifies several existing transforms. The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion. The process of finding approximations for dynamical fractional-order PDEs is challenging, but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern… More >

  • Open Access

    ARTICLE

    A Study on the Nonlinear Caputo-Type Snakebite Envenoming Model with Memory

    Pushpendra Kumar1,*, Vedat Suat Erturk2, V. Govindaraj1, Dumitru Baleanu3,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2487-2506, 2023, DOI:10.32604/cmes.2023.026009 - 09 March 2023

    Abstract In this article, we introduce a nonlinear Caputo-type snakebite envenoming model with memory. The well-known Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractional-order sense. The numerical solution of the model is derived from a novel implementation of a finite-difference predictor-corrector (L1-PC) scheme with error estimation and stability analysis. The proof of the existence and positivity of the solution is given by using the fixed point theory. From the necessary simulations, we justify that the first-time implementation of the proposed method on an epidemic model shows that the scheme More >

  • Open Access

    ARTICLE

    Modeling Drug Concentration in Blood through Caputo-Fabrizio and Caputo Fractional Derivatives

    Muath Awadalla1,*, Kinda Abuasbeh1, Yves Yannick Yameni Noupoue2, Mohammed S. Abdo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2767-2785, 2023, DOI:10.32604/cmes.2023.024036 - 23 November 2022

    Abstract This study focuses on the dynamics of drug concentration in the blood. In general, the concentration level of a drug in the blood is evaluated by the mean of an ordinary and first-order differential equation. More precisely, it is solved through an initial value problem. We proposed a new modeling technique for studying drug concentration in blood dynamics. This technique is based on two fractional derivatives, namely, Caputo and Caputo-Fabrizio derivatives. We first provided comprehensive and detailed proof of the existence of at least one solution to the problem; we later proved the uniqueness of… More >

  • Open Access

    ARTICLE

    Numerical Simulation of the Fractional-Order Lorenz Chaotic Systems with Caputo Fractional Derivative

    Dandan Dai1, Xiaoyu Li2, Zhiyuan Li2, Wei Zhang3, Yulan Wang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1371-1392, 2023, DOI:10.32604/cmes.2022.022323 - 27 October 2022

    Abstract Although some numerical methods of the fractional-order chaotic systems have been announced, high-precision numerical methods have always been the direction that researchers strive to pursue. Based on this problem, this paper introduces a high-precision numerical approach. Some complex dynamic behavior of fractional-order Lorenz chaotic systems are shown by using the present method. We observe some novel dynamic behavior in numerical experiments which are unlike any that have been previously discovered in numerical experiments or theoretical studies. We investigate the influence of , , on the numerical solution of fractional-order Lorenz chaotic systems. The simulation results More >

  • Open Access

    ARTICLE

    EFFECT OF DIFFUSION-THERMO ON MHD FLOW OF MAXWELL FLUID WITH HEAT AND MASS TRANSFER

    Muhammad Ramzana,*, Zaib Un Nisab , Mudassar Nazara,c,†

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-9, 2022, DOI:10.5098/hmt.19.12

    Abstract A magnetohydrodynamics (MHD) flow of fractional Maxwell fluid past an exponentially accelerated vertical plate is considered. In addition, other factors such as heat generation and chemical reaction are used in the problem. The flow model is solved using Caputo fractional derivative. Initially, the governing equations are made non-dimensional and then solved by Laplace transform. The influence of different parameters like diffusion thermo, fractional parameter, Magnetic field, chemical reaction, Prandtl number and Maxwell parameter are discussed through numerous graphs. From figures, it is observed that fluid motion decreases with increasing values of Schmidt number and chemical More >

  • Open Access

    ARTICLE

    Regarding Deeper Properties of the Fractional Order Kundu-Eckhaus Equation and Massive Thirring Model

    Yaya Wang1, P. Veeresha2, D. G. Prakasha3, Haci Mehmet Baskonus4,*, Wei Gao5

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 697-717, 2022, DOI:10.32604/cmes.2022.021865 - 03 August 2022

    Abstract In this paper, the fractional natural decomposition method (FNDM) is employed to find the solution for the KunduEckhaus equation and coupled fractional differential equations describing the massive Thirring model. The massive Thirring model consists of a system of two nonlinear complex differential equations, and it plays a dynamic role in quantum field theory. The fractional derivative is considered in the Caputo sense, and the projected algorithm is a graceful mixture of Adomian decomposition scheme with natural transform technique. In order to illustrate and validate the efficiency of the future technique, we analyzed projected phenomena in More >

  • Open Access

    ARTICLE

    Redefined Extended Cubic B-Spline Functions for Numerical Solution of Time-Fractional Telegraph Equation

    Muhammad Amin1, Muhammad Abbas2,*, Dumitru Baleanu3,4,5, Muhammad Kashif Iqbal6, Muhammad Bilal Riaz7

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 361-384, 2021, DOI:10.32604/cmes.2021.012720 - 30 March 2021

    Abstract This work is concerned with the application of a redefined set of extended uniform cubic B-spline (RECBS) functions for the numerical treatment of time-fractional Telegraph equation. The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid. Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure. The derivation of uniform convergence has also been presented. Some computational experiments are executed to verify the theoretical considerations. Numerical results are More >

  • Open Access

    ARTICLE

    Solving the Nonlinear Variable Order Fractional Differential Equations by Using Euler Wavelets

    Yanxin Wang1, *, Li Zhu1, Zhi Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 339-350, 2019, DOI:10.31614/cmes.2019.04575

    Abstract An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper. The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented. Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations. And the convergence of the Euler wavelets basis is given. The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy. More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin and RBFs Collocation Methods for Solving 2D Fractional Klein-Kramers Dynamics Equation on Irregular Domains

    M. Dehghan1, M. Abbaszadeh2, A. Mohebbi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.6, pp. 481-516, 2015, DOI:10.3970/cmes.2015.107.481

    Abstract In the current paper the two-dimensional time fractional Klein-Kramers equation which describes the subdiffusion in the presence of an external force field in phase space has been considered. The numerical solution of fractional Klein-Kramers equation is investigated. The proposed method is based on using finite difference scheme in time variable for obtaining a semi-discrete scheme. Also, to achieve a full discretization scheme, the Kansa's approach and meshless local Petrov-Galerkin technique are used to approximate the spatial derivatives. The meshless method has already proved successful in solving classic and fractional differential equations as well as for… More >

  • Open Access

    ARTICLE

    A New Coupled Fractional Reduced Differential Transform Method for the Numerical Solution of Fractional Predator-Prey System

    S. Saha Ray1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.3, pp. 231-249, 2015, DOI:10.3970/cmes.2015.105.231

    Abstract In the present article, a relatively very new technique viz. Coupled Fractional Reduced Differential Transform, has been executed to attain the approximate numerical solution of the predator-prey dynamical system. The fractional derivatives are defined in the Caputo sense. Utilizing the present method we can solve many linear and nonlinear coupled fractional differential equations. The results thus obtained are compared with those of other available methods. Numerical solutions are presented graphically to show the simplicity and authenticity of the method. More >

Displaying 1-10 on page 1 of 10. Per Page