Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    PROCEEDINGS

    Physics-Informed Neural Network for Young-Laplace Equation

    Cunliang Pan1, Shi Feng2, Shengyang Tao2, Hongwu Zhang1, Yonggang Zheng1,3, Hongfei Ye1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011132

    Abstract Capillarity is prevalent in nature, daily life, and industrial processes, governed by the fundamental Young-Laplace equation. Solving this equation not only enhances our understanding of natural phenomena but also provides valuable insights into industrial advancements. To address challenges posed by conventional numerical methods in parameter identification and complex boundary condition handling, the Young-Laplace Physics-informed Neural Network (Y-L PINN) is introduced to solve the Young-Laplace equation within a tubular domain. Through computational analyses focusing on the classical capillary rise case, the proposed method's accuracy is affirmed through comparisons with Jurin's law, experimental data, and numerical results.… More >

  • Open Access

    ARTICLE

    Modeling Water Adsorption and Retention of Building Materials From Pore Size Distribution

    Abdelkrim Trabelsi1,*, Zakaria Slimani1, Akli Younsi2, Joseph Virgone1, Rafik Belarbi2

    Journal of Renewable Materials, Vol.7, No.6, pp. 547-556, 2019, DOI:10.32604/jrm.2019.04426

    Abstract Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials. They account for interaction between solid matrix, liquid water and moist air. They are considered through Water Vapor Adsorption Isotherm (WVAI) and Retention Curve (RC) functions which are constitutive laws characterizing water activity within a porous medium. The objective of this paper is to present a water vapor adsorption and retention models built from multimodal Pore Size Distribution Function (PSDF) and to see how its parameters modify moisture storage for hygroscopic and near saturation ranges. The microstructure of… More >

  • Open Access

    ARTICLE

    Discrete Modelling of Capillary Mechanisms in Multi-Phase Granular Media

    L. Scholtès1, B. Chareyre2, F.Nicot3, F. Darve4

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 297-318, 2009, DOI:10.3970/cmes.2009.052.297

    Abstract A numerical study of multi-phase granular materials based upon micro-mechanical modelling is proposed. Discrete element simulations are used to investigate capillary induced effects on the friction properties of a granular assembly in the pendular regime. Capillary forces are described at the local scale through the Young-Laplace equation and are superimposed to the standard dry particle interaction usually well simulated through an elastic-plastic relationship. Both effects of the pressure difference between liquid and gas phases and of the surface tension at the interface are integrated into the interaction model. Hydraulic hysteresis is accounted for based on… More >

  • Open Access

    ARTICLE

    Derivation of a Bilayer Model for Shallow Water Equations with Viscosity. Numerical Validation

    G. Narbona-Reina1, J.D.D. Zabsonré2, E.D. Fernández-Nieto1, D. Bresch3

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.1, pp. 27-72, 2009, DOI:10.3970/cmes.2009.043.027

    Abstract In this work we present a new two-dimensional bilayer Shallow-Water model including viscosity and friction effects on the bottom and interface level. It is obtained following [Gerbeau and Perthame (2001)] from an asymptotic analysis of non-dimensional and incompressible Navier-Stokes equations with hydrostatic approximation. In order to obtain the viscosity effects into the model we must have into account a second order approximation. To evaluate this model we perform two numerical tests consisting of an internal dam-break problem for both, one and two dimensional cases. In the first one we make a comparison between the model More >

Displaying 1-10 on page 1 of 4. Per Page