Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (120)
  • Open Access

    ARTICLE

    Production Capacity Prediction Method of Shale Oil Based on Machine Learning Combination Model

    Qin Qian1, Mingjing Lu1,2,*, Anhai Zhong1, Feng Yang1, Wenjun He1, Min Li1

    Energy Engineering, Vol.121, No.8, pp. 2167-2190, 2024, DOI:10.32604/ee.2024.049430

    Abstract The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics, engineering quality, and well conditions. These relationships, nonlinear in nature, pose challenges for accurate description through physical models. While field data provides insights into real-world effects, its limited volume and quality restrict its utility. Complementing this, numerical simulation models offer effective support. To harness the strengths of both data-driven and model-driven approaches, this study established a shale oil production capacity prediction model based on a machine learning combination model. Leveraging fracturing development data from 236 wells… More >

  • Open Access

    ARTICLE

    Enhanced Transmission Tower Foundation Reliability Assessment: A Fuzzy Comprehensive Evaluation Framework

    Yang Li1, Zikang Zheng1,*, Jiangkun Zhang2

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 425-444, 2024, DOI:10.32604/sdhm.2024.046584

    Abstract Due to the lack of a quantitative basis for the inspection, evaluation, and identification of existing transmission tower foundations, a new fuzzy comprehensive evaluation method is proposed to assess the reliability of transmission tower foundation bearing capacity. This method is based on the reliability analysis of the transmission tower foundation bearing capacity by analyzing the sensitivity of degradation of detection indexes on the reliability of transmission tower foundation bearing capacity, the weighting coefficient matrix is established about the influencing factors in the evaluation model. Through the correlation analysis between the bearing capacity degradation of the More > Graphic Abstract

    Enhanced Transmission Tower Foundation Reliability Assessment: A Fuzzy Comprehensive Evaluation Framework

  • Open Access

    ARTICLE

    Analysis of Maximum Liquid Carrying Capacity Based on Conventional Tubing Plunger Gas Lift

    Yanqun Yu1,*, Wenhao Xu1, Yahui Huangfu1, Jinhai Liu1,2, Bensheng Wang1, Kai Liu1

    Energy Engineering, Vol.121, No.6, pp. 1521-1533, 2024, DOI:10.32604/ee.2024.047986

    Abstract China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of which are located in remote and environmentally harsh mountainous areas. To address the long-term stable production of these gas wells, plunger-lift technology plays an important role. In order to fully understand and accurately grasp the drainage and gas production mechanisms of plunger-lift, a mechanical model of plunger-liquid column uplift in the plunger-lift process was established, focusing on conventional plunger-lift systems and representative wellbore configurations in the Linxing region. The operating casing pressure of the plunger-lift process and the calculation method… More >

  • Open Access

    ARTICLE

    A Comprehensive Investigation on Shear Performance of Improved Perfobond Connector

    Caiping Huang*, Zihan Huang, Wenfeng You

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 299-320, 2024, DOI:10.32604/sdhm.2024.047850

    Abstract This paper presents an easily installed improved perfobond connector (PBL) designed to reduce the shear concentration of PBL. The improvement of PBL lies in changing the straight penetrating rebar to the Z-type penetrating rebar. To study the shear performance of improved PBL, two PBL test specimens which contain straight penetrating rebar and six improved PBL test specimens which contain Z-type penetrating rebars were designed and fabricated, and push-out tests of these eight test specimens were carried out to investigate and compare the shear behavior of PBL. Additionally, Finite Element Analysis (FEA) models of the PBL… More >

  • Open Access

    ARTICLE

    Selenium Differentially Regulates Flavonoid Accumulation and Antioxidant Capacities in Sprouts of Twenty Diverse Mungbean ( (L.) Wilczek) Genotypes

    Fenglan Zhao1, Jizhi Jin1, Meng Yang1, Franklin Eduardo Melo Santiago2, Jianping Xue1, Li Xu3,*, Yongbo Duan1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 611-625, 2024, DOI:10.32604/phyton.2024.048295

    Abstract

    Seed germination with selenium (Se) is promising for producing Se-biofortified foods. Mungbean (Vigna radiata (L.) Wilczek) sprout is freshly eaten as a salad dressed with sauce, making it superior for Se biofortification. Since the Se safety range for the human body is extremely narrow, it is imperative to evaluate the genotypic responses of mungbean sprouts to Se. This study evaluated the Se enrichment capacity and interaction with flavonoids and antioxidant systems in sprouts of 20 mungbean germplasms. Selenium treatment was done by immersing mungbean seeds in 20 μM sodium selenite solution for 8 h. Afterward, the

    More >

  • Open Access

    ARTICLE

    Evaluation of the Antibacterial and Antifungal Capacity of Nanoemulsions Loaded with Synthetic Chalcone Derivatives Di-Benzyl Cinnamaldehyde and Benzyl 4-Aminochalcone

    Flavia Oliveira Monteiro da Silva Abreu1,2,*, Taysse Holanda1, Joice Farias do Nascimento1, Henety Nascimento Pinheiro1, Rachel Menezes Castelo1, Hélcio Silva dos Santos3, Thais Benincá4, Patrícia da Silva Malheiros4, Júlio César Sousa Prado5, Raquel de Oliveira Fontenelle5, Maria Madalena de Camargo Forte2

    Journal of Renewable Materials, Vol.12, No.2, pp. 285-304, 2024, DOI:10.32604/jrm.2023.043919

    Abstract With the increase in antimicrobial resistance, it has become necessary to explore alternative approaches for combating and preventing diseases. DB-cinnamaldehyde (CNM) and Benzyl4-amino (B4AM) are bioactive compounds derived from chalcones but with restricted solubility in aqueous media. Nanoemulsions can enhance the solubility of compounds and can be a promising alternative in the development of novel antimicrobials, with reduced side effects and prolonged release. The objective of this study was to evaluate the stability of oil-in-water nanoemulsions loaded with two distinct types of chalcones at two different dosages, to propose a stable formulation with antimicrobial properties.… More > Graphic Abstract

    Evaluation of the Antibacterial and Antifungal Capacity of Nanoemulsions Loaded with Synthetic Chalcone Derivatives Di-Benzyl Cinnamaldehyde and Benzyl 4-Aminochalcone

  • Open Access

    ARTICLE

    Modeling of Large-Scale Hydrogen Storage System Considering Capacity Attenuation and Analysis of Its Efficiency Characteristics

    Junhui Li1, Haotian Zhang1, Cuiping Li1,*, Xingxu Zhu1, Ruitong Liu2, Fangwei Duan2, Yongming Peng3

    Energy Engineering, Vol.121, No.2, pp. 291-313, 2024, DOI:10.32604/ee.2023.027593

    Abstract In the existing power system with a large-scale hydrogen storage system, there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system. In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation, and speed up the process of electric-hydrogen-electricity conversion. This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit, and also establishes a charging and discharging efficiency model that considers the temperature and internal gas… More >

  • Open Access

    ARTICLE

    Theoretical Analysis on Deflection and Bearing Capacity of Prestressed Bamboo-Steel Composite Beams

    Qifeng Shan1,2, Ming Mao2, Yushun Li3,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 149-166, 2024, DOI:10.32604/jrm.2023.029445

    Abstract A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study. The deflection analysis considers the influences of interface slippage and shear deformation. Furthermore, the calculation model for flexural capacity is proposed considering the two stages of loading. The theoretical results are verified with 8 specimens considering different prestressed load levels, load schemes, and prestress schemes. The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams. For deflection analysis, the method considering the slippage and More >

  • Open Access

    PROCEEDINGS

    Damping Properties in Gradient Nano-Grained Metals

    Sheng Qian1, Qi Tong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010116

    Abstract Applications such as aircrafts and electronic devices require the noise and vibration reduction without much extra burden, such as extra damping systems. High damping metallic materials that exhibit the ability to dissipate mechanical energy are potential candidates in these application via directly being part of the functional components, such as the frame materials. The energy damping in polycrystalline metals depends on the activities of defects such as dislocation and grain boundary. However, operating defects has the opposite effect on strength and damping capacity. In the quest for high damping metals, maintaining the level of strength More >

  • Open Access

    ARTICLE

    Prediction of Damping Capacity Demand in Seismic Base Isolators via Machine Learning

    Ayla Ocak1, Ümit Işıkdağ2, Gebrail Bekdaş1,*, Sinan Melih Nigdeli1, Sanghun Kim3, Zong Woo Geem4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2899-2924, 2024, DOI:10.32604/cmes.2023.030418

    Abstract Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures. The base isolators may lose their damping capacity over time due to environmental or dynamic effects. This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-term isolator life. In this study, an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time. With the developed model, the required damping capacity of the isolator… More >

Displaying 1-10 on page 1 of 120. Per Page