Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Breast Cancer Diagnosis Using Artificial Intelligence Approaches: A Systematic Literature Review

    Alia Alshehri, Duaa AlSaeed*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 939-970, 2023, DOI:10.32604/iasc.2023.037096

    Abstract One of the most prevalent cancers in women is breast cancer. Early and accurate detection can decrease the mortality rate associated with breast cancer. Governments and health organizations emphasize the significance of early breast cancer screening since it is associated to a greater variety of available treatments and a higher chance of survival. Patients have the best chance of obtaining effective treatment when they are diagnosed early. The detection and diagnosis of breast cancer have involved using various image types and imaging modalities. Breast “infrared thermal” imaging is one of the imaging modalities., a screening instrument used to measure the… More >

  • Open Access

    ARTICLE

    An Intelligent Decision Support System for Lung Cancer Diagnosis

    Ahmed A. Alsheikhy1,*, Yahia F. Said1, Tawfeeq Shawly2

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 799-817, 2023, DOI:10.32604/csse.2023.035269

    Abstract Lung cancer is the leading cause of cancer-related death around the globe. The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis. Most diagnostic techniques can identify and classify only one type of lung cancer. It is crucial to close this gap with a system that detects all lung cancer types. This paper proposes an intelligent decision support system for this purpose. This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives. Its algorithm uses a Convolutional Neural Network (CNN)… More >

  • Open Access

    ARTICLE

    Auxiliary Classifier of Generative Adversarial Network for Lung Cancer Diagnosis

    P. S. Ramapraba1,*, P. Epsiba2, K. Umapathy3, E. Sivanantham4

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2177-2189, 2023, DOI:10.32604/iasc.2023.032040

    Abstract The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns. In this work, an Auxiliary Classifier (AC)-Generative Adversarial Network (GAN) based Lung Cancer Classification (LCC) system is developed. The proposed AC-GAN-LCC system consists of three modules; preprocessing, Lungs Region Detection (LRD), and AC-GAN classification. A Wiener filter is employed in the preprocessing module to remove the Gaussian noise. In the LRD module, only the lung regions (left and right lungs) are detected using iterative thresholding and morphological operations. In order to extract the lung region only, flood filling… More >

  • Open Access

    ARTICLE

    Breast Cancer Diagnosis Using Feature Selection Approaches and Bayesian Optimization

    Erkan Akkur1, Fuat TURK2,*, Osman Erogul1

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1017-1031, 2023, DOI:10.32604/csse.2023.033003

    Abstract Breast cancer seriously affects many women. If breast cancer is detected at an early stage, it may be cured. This paper proposes a novel classification model based improved machine learning algorithms for diagnosis of breast cancer at its initial stage. It has been used by combining feature selection and Bayesian optimization approaches to build improved machine learning models. Support Vector Machine, K-Nearest Neighbor, Naive Bayes, Ensemble Learning and Decision Tree approaches were used as machine learning algorithms. All experiments were tested on two different datasets, which are Wisconsin Breast Cancer Dataset (WBCD) and Mammographic Breast Cancer Dataset (MBCD). Experiments were… More >

  • Open Access

    ARTICLE

    Improved Model for Genetic Algorithm-Based Accurate Lung Cancer Segmentation and Classification

    K. Jagadeesh1,*, A. Rajendran2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2017-2032, 2023, DOI:10.32604/csse.2023.029169

    Abstract Lung Cancer is one of the hazardous diseases that have to be detected in earlier stages for providing better treatment and clinical support to patients. For lung cancer diagnosis, the computed tomography (CT) scan images are to be processed with image processing techniques and effective classification process is required for appropriate cancer diagnosis. In present scenario of medical data processing, the cancer detection process is very time consuming and exactitude. For that, this paper develops an improved model for lung cancer segmentation and classification using genetic algorithm. In the model, the input CT images are pre-processed with the filters called… More >

  • Open Access

    ARTICLE

    Enhanced Cuckoo Search Optimization Technique for Skin Cancer Diagnosis Application

    S. Ayshwarya Lakshmi1,*, K. Anandavelu2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3403-3413, 2023, DOI:10.32604/iasc.2023.030970

    Abstract Skin cancer segmentation is a critical task in a clinical decision support system for skin cancer detection. The suggested enhanced cuckoo search based optimization model will be used to evaluate several metrics in the skin cancer picture segmentation process. Because time and resources are always limited, the proposed enhanced cuckoo search optimization algorithm is one of the most effective strategies for dealing with global optimization difficulties. One of the most significant requirements is to design optimal solutions to optimize their use. There is no particular technique that can answer all optimization issues. The proposed enhanced cuckoo search optimization method indicates… More >

  • Open Access

    ARTICLE

    LBP–Bilateral Based Feature Fusion for Breast Cancer Diagnosis

    Yassir Edrees Almalki1, Maida Khalid2, Sharifa Khalid Alduraibi3, Qudsia Yousaf2, Maryam Zaffar2, Shoayea Mohessen Almutiri4, Muhammad Irfan5, Mohammad Abd Alkhalik Basha6, Alaa Khalid Alduraibi3, Abdulrahman Manaa Alamri7, Khalaf Alshamrani8, Hassan A. Alshamrani8,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4103-4121, 2022, DOI:10.32604/cmc.2022.029039

    Abstract Since reporting cases of breast cancer are on the rise all over the world. Especially in regions such as Pakistan, Saudi Arabia, and the United States. Efficient methods for the early detection and diagnosis of breast cancer are needed. The usual diagnosis procedures followed by physicians has been updated with modern diagnostic approaches that include computer-aided support for better accuracy. Machine learning based practices has increased the accuracy and efficiency of medical diagnosis, which has helped save lives of many patients. There is much research in the field of medical imaging diagnostics that can be applied to the variety of… More >

  • Open Access

    ARTICLE

    Optimal Deep Learning Based Inception Model for Cervical Cancer Diagnosis

    Tamer AbuKhalil1, Bassam A. Y. Alqaralleh2,*, Ahmad H. Al-Omari3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 57-71, 2022, DOI:10.32604/cmc.2022.024367

    Abstract Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images. Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist. Therefore, automated cervical cancer diagnosis using automated methods are necessary. This paper designs an optimal deep learning based Inception model for cervical cancer diagnosis (ODLIM-CCD) using pap smear images. The proposed ODLIM-CCD technique incorporates median filtering (MF) based pre-processing to discard the noise and Otsu model based segmentation process. Besides, deep convolutional neural network (DCNN) based Inception with Residual Network (ResNet) v2 model is utilized for deriving the feature… More >

  • Open Access

    ARTICLE

    Automated Deep Learning Empowered Breast Cancer Diagnosis Using Biomedical Mammogram Images

    José Escorcia-Gutierrez1,*, Romany F. Mansour2, Kelvin Beleño3, Javier Jiménez-Cabas4, Meglys Pérez1, Natasha Madera1, Kevin Velasquez1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4221-4235, 2022, DOI:10.32604/cmc.2022.022322

    Abstract Biomedical image processing is a hot research topic which helps to majorly assist the disease diagnostic process. At the same time, breast cancer becomes the deadliest disease among women and can be detected by the use of different imaging techniques. Digital mammograms can be used for the earlier identification and diagnostic of breast cancer to minimize the death rate. But the proper identification of breast cancer has mainly relied on the mammography findings and results to increased false positives. For resolving the issues of false positives of breast cancer diagnosis, this paper presents an automated deep learning based breast cancer… More >

  • Open Access

    ARTICLE

    Optimal Deep Convolution Neural Network for Cervical Cancer Diagnosis Model

    Mohamed Ibrahim Waly1, Mohamed Yacin Sikkandar1, Mohamed Abdelkader Aboamer1, Seifedine Kadry2, Orawit Thinnukool3,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3295-3309, 2022, DOI:10.32604/cmc.2022.020713

    Abstract Biomedical imaging is an effective way of examining the internal organ of the human body and its diseases. An important kind of biomedical image is Pap smear image that is widely employed for cervical cancer diagnosis. Cervical cancer is a vital reason for increased women’s mortality rate. Proper screening of pap smear images is essential to assist the earlier identification and diagnostic process of cervical cancer. Computer-aided systems for cancerous cell detection need to be developed using deep learning (DL) approaches. This study introduces an intelligent deep convolutional neural network for cervical cancer detection and classification (IDCNN-CDC) model using biomedical… More >

Displaying 1-10 on page 1 of 15. Per Page  

Share Link