Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Research on Enhanced Contraband Dataset ACXray Based on ETL

    Xueping Song1,*, Jianming Yang1, Shuyu Zhang1, Jicun Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4551-4572, 2024, DOI:10.32604/cmc.2024.049446 - 20 June 2024

    Abstract To address the shortage of public datasets for customs X-ray images of contraband and the difficulties in deploying trained models in engineering applications, a method has been proposed that employs the Extract-Transform-Load (ETL) approach to create an X-ray dataset of contraband items. Initially, X-ray scatter image data is collected and cleaned. Using Kafka message queues and the Elasticsearch (ES) distributed search engine, the data is transmitted in real-time to cloud servers. Subsequently, contraband data is annotated using a combination of neural networks and manual methods to improve annotation efficiency and implemented mean hash algorithm for… More >

  • Open Access

    ARTICLE

    Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images

    Shaik Mahaboob Basha1,*, Victor Hugo C. de Albuquerque2, Samia Allaoua Chelloug3,*, Mohamed Abd Elaziz4,5,6,7, Shaik Hashmitha Mohisin8, Suhail Parvaze Pathan9

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1981-2004, 2024, DOI:10.32604/cmes.2023.031425 - 17 November 2023

    Abstract Manual investigation of chest radiography (CXR) images by physicians is crucial for effective decision-making in COVID-19 diagnosis. However, the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques. This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies, including normal cases. Texture information is extracted using gray co-occurrence matrix (GLCM)-based features, while vessel-like features are obtained using Frangi, Sato, and Meijering filters. Machine learning models employing Decision Tree (DT) and Random Forest (RF) approaches are designed to categorize CXR images… More > Graphic Abstract

    Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images

  • Open Access

    ARTICLE

    MDEV Model: A Novel Ensemble-Based Transfer Learning Approach for Pneumonia Classification Using CXR Images

    Mehwish Shaikh1, Isma Farah Siddiqui1, Qasim Arain1, Jahwan Koo2,*, Mukhtiar Ali Unar3, Nawab Muhammad Faseeh Qureshi4,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 287-302, 2023, DOI:10.32604/csse.2023.035311 - 20 January 2023

    Abstract Pneumonia is a dangerous respiratory disease due to which breathing becomes incredibly difficult and painful; thus, catching it early is crucial. Medical physicians’ time is limited in outdoor situations due to many patients; therefore, automated systems can be a rescue. The input images from the X-ray equipment are also highly unpredictable due to variances in radiologists’ experience. Therefore, radiologists require an automated system that can swiftly and accurately detect pneumonic lungs from chest x-rays. In medical classifications, deep convolution neural networks are commonly used. This research aims to use deep pre-trained transfer learning models to… More >

  • Open Access

    ARTICLE

    Histogram Matched Chest X-Rays Based Tuberculosis Detection Using CNN

    Joe Louis Paul Ignatius1,*, Sasirekha Selvakumar1, Kavin Gabriel Joe Louis Paul2, Aadhithya B. Kailash1, S. Keertivaas1, S. A. J. Akarvin Raja Prajan1

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 81-97, 2023, DOI:10.32604/csse.2023.025195 - 01 June 2022

    Abstract Tuberculosis (TB) is a severe infection that mostly affects the lungs and kills millions of people’s lives every year. Tuberculosis can be diagnosed using chest X-rays (CXR) and data-driven deep learning (DL) approaches. Because of its better automated feature extraction capability, convolutional neural networks (CNNs) trained on natural images are particularly effective in image categorization. A combination of 3001 normal and 3001 TB CXR images was gathered for this study from different accessible public datasets. Ten different deep CNNs (Resnet50, Resnet101, Resnet152, InceptionV3, VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, MobileNet) are trained and tested for identifying… More >

  • Open Access

    ARTICLE

    COVID-19 Imaging Detection in the Context of Artificial Intelligence and the Internet of Things

    Xiaowei Gu1,#, Shuwen Chen1,2,#,*, Huisheng Zhu1, Mackenzie Brown3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 507-530, 2022, DOI:10.32604/cmes.2022.018948 - 15 June 2022

    Abstract Coronavirus disease 2019 brings a huge burden on the medical industry all over the world. In the background of artificial intelligence (AI) and Internet of Things (IoT) technologies, chest computed tomography (CT) and chest X-ray (CXR) scans are becoming more intelligent, and playing an increasingly vital role in the diagnosis and treatment of diseases. This paper will introduce the segmentation of methods and applications. CXR and CT diagnosis of COVID-19 based on deep learning, which can be widely used to fight against COVID-19. More >

  • Open Access

    ARTICLE

    Utilization of Artificial Intelligence in Medical Image Analysis for COVID-19 Patients Detection

    Mohammed Baz1,*, Hatem Zaini1, Hala S. El-sayed2, Matokah AbuAlNaja3, Heba M. El-Hoseny4, Osama S. Faragallah5

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 97-111, 2021, DOI:10.32604/iasc.2021.018265 - 26 July 2021

    Abstract In the era of medical technology, automatic scan detection can be considered a charming tool in medical diagnosis, especially with rapidly spreading diseases. In light of the prevalence of the current Coronavirus disease (COVID-19), which is characterized as highly contagious and very complicated, it is urgent and necessary to find a quick way that can be practically implemented for diagnosing COVID-19. The danger of the virus lies in the fact that patients can spread the disease without showing any symptoms. Moreover, several vaccines have been produced and vaccinated in large numbers but, the outbreak does… More >

Displaying 1-10 on page 1 of 6. Per Page