Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Enhancing Early Detection of Lung Cancer through Advanced Image Processing Techniques and Deep Learning Architectures for CT Scans

    Nahed Tawfik1,*, Heba M. Emara2, Walid El-Shafai3, Naglaa F. Soliman4, Abeer D. Algarni4, Fathi E. Abd El-Samie4

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 271-307, 2024, DOI:10.32604/cmc.2024.052404 - 15 October 2024

    Abstract Lung cancer remains a major concern in modern oncology due to its high mortality rates and multifaceted origins, including hereditary factors and various clinical changes. It stands as the deadliest type of cancer and a significant cause of cancer-related deaths globally. Early diagnosis enables healthcare providers to administer appropriate treatment measures promptly and accurately, leading to improved prognosis and higher survival rates. The significant increase in both the incidence and mortality rates of lung cancer, particularly its ranking as the second most prevalent cancer among women worldwide, underscores the need for comprehensive research into efficient… More >

  • Open Access

    ARTICLE

    Classification of Brain Tumors Using Hybrid Feature Extraction Based on Modified Deep Learning Techniques

    Tawfeeq Shawly1, Ahmed Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 425-443, 2023, DOI:10.32604/cmc.2023.040561 - 31 October 2023

    Abstract According to the World Health Organization (WHO), Brain Tumors (BrT) have a high rate of mortality across the world. The mortality rate, however, decreases with early diagnosis. Brain images, Computed Tomography (CT) scans, Magnetic Resonance Imaging scans (MRIs), segmentation, analysis, and evaluation make up the critical tools and steps used to diagnose brain cancer in its early stages. For physicians, diagnosis can be challenging and time-consuming, especially for those with little expertise. As technology advances, Artificial Intelligence (AI) has been used in various domains as a diagnostic tool and offers promising outcomes. Deep-learning techniques are… More >

  • Open Access

    ARTICLE

    Liver Tumor Prediction with Advanced Attention Mechanisms Integrated into a Depth-Based Variant Search Algorithm

    P. Kalaiselvi1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1209-1226, 2023, DOI:10.32604/cmc.2023.040264 - 31 October 2023

    Abstract In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse diseases at specific intervals. Liver tumor prediction is a vital chore in analyzing and treating liver diseases. This paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks (CNN) and a depth-based variant search algorithm with advanced attention mechanisms (CNN-DS-AM). The proposed work aims to improve accuracy and robustness in diagnosing… More >

  • Open Access

    ARTICLE

    An Automated Classification Technique for COVID-19 Using Optimized Deep Learning Features

    Ejaz Khan1, Muhammad Zia Ur Rehman2, Fawad Ahmed3, Suliman A. Alsuhibany4,*, Muhammad Zulfiqar Ali5, Jawad Ahmad6

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3799-3814, 2023, DOI:10.32604/csse.2023.037131 - 03 April 2023

    Abstract In 2020, COVID-19 started spreading throughout the world. This deadly infection was identified as a virus that may affect the lungs and, in severe cases, could be the cause of death. The polymerase chain reaction (PCR) test is commonly used to detect this virus through the nasal passage or throat. However, the PCR test exposes health workers to this deadly virus. To limit human exposure while detecting COVID-19, image processing techniques using deep learning have been successfully applied. In this paper, a strategy based on deep learning is employed to classify the COVID-19 virus. To… More >

  • Open Access

    ARTICLE

    Residual Attention Deep SVDD for COVID-19 Diagnosis Using CT Scans

    Akram Ali Alhadad1,2,*, Omar Tarawneh3, Reham R. Mostafa1, Hazem M. El-Bakry1

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3333-3350, 2023, DOI:10.32604/cmc.2023.033413 - 31 October 2022

    Abstract COVID-19 is the common name of the disease caused by the novel coronavirus (2019-nCoV) that appeared in Wuhan, China in 2019. Discovering the infected people is the most important factor in the fight against the disease. The gold-standard test to diagnose COVID-19 is polymerase chain reaction (PCR), but it takes 5–6 h and, in the early stages of infection, may produce false-negative results. Examining Computed Tomography (CT) images to diagnose patients infected with COVID-19 has become an urgent necessity. In this study, we propose a residual attention deep support vector data description SVDD (RADSVDD) approach… More >

  • Open Access

    ARTICLE

    A Mathematical Model for COVID-19 Image Enhancement based on Mittag-Leffler-Chebyshev Shift

    Ibtisam Aldawish1, Hamid A. Jalab2,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1307-1316, 2022, DOI:10.32604/cmc.2022.029445 - 18 May 2022

    Abstract The lungs CT scan is used to visualize the spread of the disease across the lungs to obtain better knowledge of the state of the COVID-19 infection. Accurately diagnosing of COVID-19 disease is a complex challenge that medical system face during the pandemic time. To address this problem, this paper proposes a COVID-19 image enhancement based on Mittag-Leffler-Chebyshev polynomial as pre-processing step for COVID-19 detection and segmentation. The proposed approach comprises the Mittag-Leffler sum convoluted with Chebyshev polynomial. The idea for using the proposed image enhancement model is that it improves images with low gray-level… More >

  • Open Access

    ARTICLE

    Efficient Computer Aided Diagnosis System for Hepatic Tumors Using Computed Tomography Scans

    Yasmeen Al-Saeed1,2, Wael A. Gab-Allah1, Hassan Soliman1, Maysoon F. Abulkhair3, Wafaa M. Shalash4, Mohammed Elmogy1,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4871-4894, 2022, DOI:10.32604/cmc.2022.023638 - 14 January 2022

    Abstract One of the leading causes of mortality worldwide is liver cancer. The earlier the detection of hepatic tumors, the lower the mortality rate. This paper introduces a computer-aided diagnosis system to extract hepatic tumors from computed tomography scans and classify them into malignant or benign tumors. Segmenting hepatic tumors from computed tomography scans is considered a challenging task due to the fuzziness in the liver pixel range, intensity values overlap between the liver and neighboring organs, high noise from computed tomography scanner, and large variance in tumors shapes. The proposed method consists of three main More >

  • Open Access

    ARTICLE

    Classification of COVID-19 CT Scans via Extreme Learning Machine

    Muhammad Attique Khan1, Abdul Majid1, Tallha Akram2, Nazar Hussain1, Yunyoung Nam3,*, Seifedine Kadry4, Shui-Hua Wang5, Majed Alhaisoni6

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1003-1019, 2021, DOI:10.32604/cmc.2021.015541 - 22 March 2021

    Abstract Here, we use multi-type feature fusion and selection to predict COVID-19 infections on chest computed tomography (CT) scans. The scheme operates in four steps. Initially, we prepared a database containing COVID-19 pneumonia and normal CT scans. These images were retrieved from the Radiopaedia COVID-19 website. The images were divided into training and test sets in a ratio of 70:30. Then, multiple features were extracted from the training data. We used canonical correlation analysis to fuse the features into single vectors; this enhanced the predictive capacity. We next implemented a genetic algorithm (GA) in which an More >

  • Open Access

    ARTICLE

    Classification of Positive COVID-19 CT Scans Using Deep Learning

    Muhammad Attique Khan1, Nazar Hussain1, Abdul Majid1, Majed Alhaisoni2, Syed Ahmad Chan Bukhari3, Seifedine Kadry4, Yunyoung Nam5,*, Yu-Dong Zhang6

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2923-2938, 2021, DOI:10.32604/cmc.2021.013191 - 28 December 2020

    Abstract In medical imaging, computer vision researchers are faced with a variety of features for verifying the authenticity of classifiers for an accurate diagnosis. In response to the coronavirus 2019 (COVID-19) pandemic, new testing procedures, medical treatments, and vaccines are being developed rapidly. One potential diagnostic tool is a reverse-transcription polymerase chain reaction (RT-PCR). RT-PCR, typically a time-consuming process, was less sensitive to COVID-19 recognition in the disease’s early stages. Here we introduce an optimized deep learning (DL) scheme to distinguish COVID-19-infected patients from normal patients according to computed tomography (CT) scans. In the proposed method,… More >

  • Open Access

    ABSTRACT

    On the Identification of Heterogeneous Nonlinear Material Properties of the Aortic Wall from Clinical Gated CT Scans

    Minliang Liu1, Liang Liang2, Xiaoying Lou3, Glen Iannucci3, Edward Chen3, Bradley Leshnower3, Wei Sun1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 53-53, 2019, DOI:10.32604/mcb.2019.07387

    Abstract It is well known that mechanical properties of the aortic wall exhibit patient-specific variations. Recent experimental findings also suggest the aortic wall properties are highly region-specific [1-2]. Thus, in vivo heterogeneous (non-uniform) nonlinear mechanical properties of the aortic wall of individual patients needs to be noninvasively identified for accurate prediction of clinical events (e.g. aortic rupture).
    In this study, we developed an inverse approach for identification of patient-specific non-uniform material properties of the aortic wall from gated 3D CT scans. This inverse approach leverages the fact that the in vivo transmural mean stress (tension) of… More >

Displaying 1-10 on page 1 of 10. Per Page