Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Knockdown of Zinc Transporter ZIP5 by RNA Interference Inhibits Esophageal Cancer Growth In Vivo

    Qian Li, Jing Jin, Jianghui Liu, Liqun Wang, Yutong He

    Oncology Research, Vol.24, No.3, pp. 205-214, 2016, DOI:10.3727/096504016X14648701447896

    Abstract We recently found that SLC39A5 (ZIP5), a zinc transporter, is overexpressed in esophageal cancer. Downregulation of ZIP5 inhibited the proliferation, migration, and invasion of the esophageal cancer cell line KYSE170 in vitro. In this study, we found that downregulation of SLC39A5 (ZIP5) by interference resulted in a significant reduction in esophageal cancer tumor volume and weight in vivo. COX2 (cyclooxygenase 2) expression was decreased and E-cadherin expression was increased in the KYSE170K xenografts, which was caused by the downregulation of ZIP5. However, we did not find that the downregulation of ZIP5 caused a change in More >

  • Open Access

    ARTICLE

    miR-136 Inhibits Malignant Progression of Hepatocellular Carcinoma Cells by Targeting Cyclooxygenase 2

    Haiyan Jia*, Hong Wang, Yanfen Yao*, Chunlei Wang, Pibao Li*

    Oncology Research, Vol.26, No.6, pp. 967-976, 2018, DOI:10.3727/096504018X15148192843443

    Abstract MicroRNAs (miRNAs) play a vital role in regulating tumor progression. Dysregulated miR-136 expression was linked to the development of various human cancers. In the present study, we investigated the expression and relationship of miR-136 and COX2 in hepatocellular carcinoma (HCC) using relevant experiments, involving CCK-8, Transwell assay, and luciferase reporter assay. We demonstrated that miR-136 expression is obviously decreased in HCC tissues and cells, and negatively correlated with the expression of COX2 mRNA. In vitro assay revealed that overexpression of miR-136 significantly changed the expression of proliferation- and metastasis-related proteins and inhibited the proliferation, migration, More >

Displaying 1-10 on page 1 of 2. Per Page