Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images

    José Escorcia-Gutierrez1,*, Margarita Gamarra1, Roosvel Soto-Diaz2, Safa Alsafari3, Ayman Yafoz4, Romany F. Mansour5

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5255-5270, 2023, DOI:10.32604/cmc.2023.033731 - 29 April 2023

    Abstract A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs. Chest X-ray (CXR) gained much interest after the COVID-19 outbreak thanks to its rapid imaging time, widespread availability, low cost, and portability. In radiological investigations, computer-aided diagnostic tools are implemented to reduce intra- and inter-observer variability. Using lately industrialized Artificial Intelligence (AI) algorithms and radiological techniques to diagnose and classify disease is advantageous. The current study develops an automatic identification and classification model for CXR pictures using Gaussian Filtering based Optimized Synergic Deep Learning using… More >

  • Open Access

    ARTICLE

    An Automated Classification Technique for COVID-19 Using Optimized Deep Learning Features

    Ejaz Khan1, Muhammad Zia Ur Rehman2, Fawad Ahmed3, Suliman A. Alsuhibany4,*, Muhammad Zulfiqar Ali5, Jawad Ahmad6

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3799-3814, 2023, DOI:10.32604/csse.2023.037131 - 03 April 2023

    Abstract In 2020, COVID-19 started spreading throughout the world. This deadly infection was identified as a virus that may affect the lungs and, in severe cases, could be the cause of death. The polymerase chain reaction (PCR) test is commonly used to detect this virus through the nasal passage or throat. However, the PCR test exposes health workers to this deadly virus. To limit human exposure while detecting COVID-19, image processing techniques using deep learning have been successfully applied. In this paper, a strategy based on deep learning is employed to classify the COVID-19 virus. To… More >

  • Open Access

    ARTICLE

    COVID-19 Classification from X-Ray Images: An Approach to Implement Federated Learning on Decentralized Dataset

    Ali Akbar Siddique1, S. M. Umar Talha1, M. Aamir1, Abeer D. Algarni2, Naglaa F. Soliman2,*, Walid El-Shafai3,4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3883-3901, 2023, DOI:10.32604/cmc.2023.037413 - 31 March 2023

    Abstract The COVID-19 pandemic has devastated our daily lives, leaving horrific repercussions in its aftermath. Due to its rapid spread, it was quite difficult for medical personnel to diagnose it in such a big quantity. Patients who test positive for Covid-19 are diagnosed via a nasal PCR test. In comparison, polymerase chain reaction (PCR) findings take a few hours to a few days. The PCR test is expensive, although the government may bear expenses in certain places. Furthermore, subsets of the population resist invasive testing like swabs. Therefore, chest X-rays or Computerized Vomography (CT) scans are… More >

  • Open Access

    ARTICLE

    Chaotic Flower Pollination with Deep Learning Based COVID-19 Classification Model

    T. Gopalakrishnan1, Mohamed Yacin Sikkandar2, Raed Abdullah Alharbi3, P. Selvaraj4, Zahraa H. Kareem5, Ahmed Alkhayyat6,*, Ali Hashim Abbas7

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6195-6212, 2023, DOI:10.32604/cmc.2023.033252 - 28 December 2022

    Abstract The Coronavirus Disease (COVID-19) pandemic has exposed the vulnerabilities of medical services across the globe, especially in underdeveloped nations. In the aftermath of the COVID-19 outbreak, a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods. Medical imaging has become a crucial component in the disease diagnosis process, whereas X-rays and Computed Tomography (CT) scan imaging are employed in a deep network to diagnose the diseases. In general, four steps are followed in image-based diagnostics and disease classification… More >

  • Open Access

    ARTICLE

    Efficient Grad-Cam-Based Model for COVID-19 Classification and Detection

    Saleh Albahli1,*, Ghulam Nabi Ahmad Hassan Yar2,3

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2743-2757, 2023, DOI:10.32604/csse.2023.024463 - 01 August 2022

    Abstract Corona Virus (COVID-19) is a novel virus that crossed an animal-human barrier and emerged in Wuhan, China. Until now it has affected more than 119 million people. Detection of COVID-19 is a critical task and due to a large number of patients, a shortage of doctors has occurred for its detection. In this paper, a model has been suggested that not only detects the COVID-19 using X-ray and CT-Scan images but also shows the affected areas. Three classes have been defined; COVID-19, normal, and Pneumonia for X-ray images. For CT-Scan images, 2 classes have been… More >

  • Open Access

    ARTICLE

    X-ray Based COVID-19 Classification Using Lightweight EfficientNet

    Tahani Maazi Almutairi*, Mohamed Maher Ben Ismail, Ouiem Bchir

    Journal on Artificial Intelligence, Vol.4, No.3, pp. 167-187, 2022, DOI:10.32604/jai.2022.032974 - 01 December 2022

    Abstract The world has been suffering from the Coronavirus (COVID-19) pandemic since its appearance in late 2019. COVID-19 spread has led to a drastic increase of the number of infected people and deaths worldwide. Imminent and accurate diagnosis of positive cases emerged as a natural alternative to reduce the number of serious infections and limit the spread of the disease. In this paper, we proposed an X-ray based COVID-19 classification system that aims at diagnosing positive COVID-19 cases. Specifically, we adapted lightweight versions of EfficientNet as backbone of the proposed recognition system. Particularly, lightweight EfficientNet networks… More >

  • Open Access

    ARTICLE

    Optimal Kernel Extreme Learning Machine for COVID-19 Classification on Epidemiology Dataset

    Saud S. Alotaibi1, Amal Al-Rasheed2, Sami Althahabi3, Manar Ahmed Hamza4,*, Abdullah Mohamed5, Abu Sarwar Zamani4, Abdelwahed Motwakel4, Mohamed I. Eldesouki6

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3305-3318, 2022, DOI:10.32604/cmc.2022.029385 - 16 June 2022

    Abstract Artificial Intelligence (AI) encompasses various domains such as Machine Learning (ML), Deep Learning (DL), and other cognitive technologies which have been widely applied in healthcare sector. AI models are utilized in healthcare sector in which the machines are used to investigate and make decisions based on prediction and classification of input data. With this motivation, the current study involves the design of Metaheuristic Optimization with Kernel Extreme Learning Machine for COVID-19 Prediction Model on Epidemiology Dataset, named MOKELM-CPED technique. The primary aim of the presented MOKELM-CPED model is to accomplish effectual COVID-19 classification outcomes using… More >

  • Open Access

    ARTICLE

    Optimal Hybrid Feature Extraction with Deep Learning for COVID-19 Classifications

    Majdy M. Eltahir1, Ibrahim Abunadi2, Fahd N. Al-Wesabi3,4, Anwer Mustafa Hilal5, Adil Yousif6, Abdelwahed Motwakel5, Mesfer Al Duhayyim7, Manar Ahmed Hamza5,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6257-6273, 2022, DOI:10.32604/cmc.2022.024312 - 14 January 2022

    Abstract Novel coronavirus 2019 (COVID-19) has affected the people's health, their lifestyle and economical status across the globe. The application of advanced Artificial Intelligence (AI) methods in combination with radiological imaging is useful in accurate detection of the disease. It also assists the physicians to take care of remote villages too. The current research paper proposes a novel automated COVID-19 analysis method with the help of Optimal Hybrid Feature Extraction (OHFE) and Optimal Deep Neural Network (ODNN) called OHFE-ODNN from chest x-ray images. The objective of the presented technique is for performing binary and multi-class classification… More >

  • Open Access

    ARTICLE

    Deep Stacked Ensemble Learning Model for COVID-19 Classification

    G. Madhu1, B. Lalith Bharadwaj1, Rohit Boddeda2, Sai Vardhan1, K. Sandeep Kautish3, Khalid Alnowibet4, Adel F. Alrasheedi4, Ali Wagdy Mohamed5,6,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5467-5469, 2022, DOI:10.32604/cmc.2022.020455 - 11 October 2021

    Abstract COVID-19 is a growing problem worldwide with a high mortality rate. As a result, the World Health Organization (WHO) declared it a pandemic. In order to limit the spread of the disease, a fast and accurate diagnosis is required. A reverse transcript polymerase chain reaction (RT-PCR) test is often used to detect the disease. However, since this test is time-consuming, a chest computed tomography (CT) or plain chest X-ray (CXR) is sometimes indicated. The value of automated diagnosis is that it saves time and money by minimizing human effort. Three significant contributions are made by… More >

  • Open Access

    ARTICLE

    Efficient Deep CNN Model for COVID-19 Classification

    Walid El-Shafai1,2,*, Amira A. Mahmoud1, El-Sayed M. El-Rabaie1, Taha E. Taha1, Osama F. Zahran1, Adel S. El-Fishawy1, Mohammed Abd-Elnaby3, Fathi E. Abd El-Samie1,4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4373-4391, 2022, DOI:10.32604/cmc.2022.019354 - 11 October 2021

    Abstract Coronavirus (COVID-19) infection was initially acknowledged as a global pandemic in Wuhan in China. World Health Organization (WHO) stated that the COVID-19 is an epidemic that causes a 3.4% death rate. Chest X-Ray (CXR) and Computerized Tomography (CT) screening of infected persons are essential in diagnosis applications. There are numerous ways to identify positive COVID-19 cases. One of the fundamental ways is radiology imaging through CXR, or CT images. The comparison of CT and CXR scans revealed that CT scans are more effective in the diagnosis process due to their high quality. Hence, automated classification… More >

Displaying 1-10 on page 1 of 10. Per Page