Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Semiconducting SWCNT Photo Detector for High Speed Switching Through Single Halo Doping

    A. Arulmary1,*, V. Rajamani2, T. Kavitha2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1617-1630, 2023, DOI:10.32604/csse.2023.034681 - 09 February 2023

    Abstract The method opted for accuracy, and no existing studies are based on this method. A design and characteristic survey of a new small band gap semiconducting Single Wall Carbon Nano Tube (SWCNT) Field Effect Transistor as a photodetector is carried out. In the proposed device, better performance is achieved by increasing the diameter and introducing a new single halo (SH) doping in the channel length of the CNTFET device. This paper is a study and analysis of the performance of a Carbon Nano Tube Field Effect Transistor (CNTFET) as a photodetector using the self-consistent Poisson… More >

  • Open Access

    ARTICLE

    CNTFET Based Fully Differential First Order All Pass Filter

    Muhammad I. Masud*, Iqbal A. Khan

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2425-2438, 2023, DOI:10.32604/csse.2023.027570 - 01 August 2022

    Abstract A novel, carbon nanotube field effect transistor (CNTFET) based fully differential first order all pass filter (FDFAPF) circuit configuration is presented. The FDFAPF uses CNTFET based negative transconductors (NTs) and positive transconductors (PTs) in its realization. The proposed circuit topology employs two PTs, two NTs, two resistors and one capacitor. All the passive components of the realized topology are grounded. Active only fully differential first order all pass filter (AO-FDFAPF) topology is also derived from the proposed FDFAPF. The electronic tunability of the AO-FDFAPF is obtained by controlling the employed CNTFET based varactor. A tunabilty… More >

  • Open Access

    ARTICLE

    Design of Multi-Valued Logic Circuit Using Carbon Nano Tube Field Transistors

    S. V. Ratankumar1,2, L. Koteswara Rao1,*, M. Kiran Kumar3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5283-5298, 2022, DOI:10.32604/cmc.2022.027975 - 28 July 2022

    Abstract The design of a three-input logic circuit using carbon nanotube field effect transistors (CNTFETs) is presented. Ternary logic must be an exact replacement for dual logic since it performs straightforwardly in digital devices, which is why this design is so popular, and it also reduces chip area, both of which are examples of circuit overheads. The proposed module we have investigated is a triple-logic-based one, based on advanced technology CNTFETs and an emphasis on minimizing delay times at various values, as well as comparisons of the design working with various load capacitances. Comparing the proposed… More >

  • Open Access

    ARTICLE

    CNTFET Based Grounded Active Inductor for Broadband Applications

    Muhammad I. Masud1,2,*, Nasir Shaikh-Husin2, Iqbal A. Khan1, Abu K. Bin A’Ain2

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 2135-2149, 2022, DOI:10.32604/cmc.2022.026831 - 18 May 2022

    Abstract A new carbon nanotube field effect transistor (CNTFET) based grounded active inductor (GAI) circuit is presented in this work. The suggested GAI offers a tunable inductance with a very wide inductive bandwidth, high quality factor (QF) and low power dissipation. The tunability of the realized circuit is achieved through CNTFET based varactor. The proposed topology shows inductive behavior in the frequency range of 0.1–101 GHz and achieves to a maximum QF of 9125. The GAI operates at 0.7 V with 0.337 mW of power consumption. To demonstrate the performance of GAI, a broadband low noise amplifier (LNA) More >

  • Open Access

    ARTICLE

    High Precision SAR ADC Using CNTFET for Internet of Things

    V. Gowrishankar1,*, K. Venkatachalam1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 947-957, 2019, DOI:10.32604/cmc.2019.07749

    Abstract A high precision 10-bit successive approximation register analog to digital converter (ADC) designed and implemented in 32nm CNTFET process technology at the supply of 0.6V, with 73.24 dB SNDR at a sampling rate of 640 MS/s with the average power consumption of 120.2 μW for the Internet of things node. The key components in CNTFET SAR ADCs are binary scaled charge redistribution digital to analog converter using MOS capacitors, CNTFET based dynamic latch comparator and simple SAR digital code error correction logic. These techniques are used to increase the sampling rate and precision while ensuring More >

Displaying 1-10 on page 1 of 5. Per Page