Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    X-MalNet: A CNN-Based Malware Detection Model with Visual and Structural Interpretability

    Kirubavathi Ganapathiyappan1, Heba G. Mohamed2, Abhishek Yadav1, Guru Akshya Chinnaswamy1, Ateeq Ur Rehman3,*, Habib Hamam4,5,6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069951 - 09 December 2025

    Abstract The escalating complexity of modern malware continues to undermine the effectiveness of traditional signature-based detection techniques, which are often unable to adapt to rapidly evolving attack patterns. To address these challenges, this study proposes X-MalNet, a lightweight Convolutional Neural Network (CNN) framework designed for static malware classification through image-based representations of binary executables. By converting malware binaries into grayscale images, the model extracts distinctive structural and texture-level features that signify malicious intent, thereby eliminating the dependence on manual feature engineering or dynamic behavioral analysis. Built upon a modified AlexNet architecture, X-MalNet employs transfer learning to… More >

  • Open Access

    ARTICLE

    Hyper-Chaos and CNN-Based Image Encryption Scheme for Wireless Communication Transmission

    Gang Liu1, Guosheng Xu1,*, Chenyu Wang1, Guoai Xu2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4851-4868, 2025, DOI:10.32604/cmc.2025.066331 - 30 July 2025

    Abstract In wireless communication transmission, image encryption plays a key role in protecting data privacy against unauthorized access. However, conventional encryption methods often face challenges in key space security, particularly when relying on chaotic sequences, which may exhibit vulnerabilities to brute-force and predictability-based attacks. To address the limitations, this paper presents a robust and efficient encryption scheme that combines iterative hyper-chaotic systems and Convolutional Neural Networks (CNNs). Firstly, a novel two-dimensional iterative hyper-chaotic system is proposed because of its complex dynamic behavior and expanded parameter space, which can enhance the key space complexity and randomness, ensuring… More >

  • Open Access

    ARTICLE

    E-GlauNet: A CNN-Based Ensemble Deep Learning Model for Glaucoma Detection and Staging Using Retinal Fundus Images

    Maheen Anwar1, Saima Farhan1, Yasin Ul Haq2, Waqar Azeem3, Muhammad Ilyas4, Razvan Cristian Voicu5,*, Muhammad Hassan Tanveer5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3477-3502, 2025, DOI:10.32604/cmc.2025.065141 - 03 July 2025

    Abstract Glaucoma, a chronic eye disease affecting millions worldwide, poses a substantial threat to eyesight and can result in permanent vision loss if left untreated. Manual identification of glaucoma is a complicated and time-consuming practice requiring specialized expertise and results may be subjective. To address these challenges, this research proposes a computer-aided diagnosis (CAD) approach using Artificial Intelligence (AI) techniques for binary and multiclass classification of glaucoma stages. An ensemble fusion mechanism that combines the outputs of three pre-trained convolutional neural network (ConvNet) models–ResNet-50, VGG-16, and InceptionV3 is utilized in this paper. This fusion technique enhances… More >

  • Open Access

    ARTICLE

    Hybrid MNLTP Texture Descriptor and PDCNN-Based OCT Image Classification for Retinal Disease Detection

    Jahida Subhedar1,2, Anurag Mahajan1,*, Shabana Urooj3, Neeraj Kumar Shukla4,5

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2831-2847, 2025, DOI:10.32604/cmc.2025.059350 - 17 February 2025

    Abstract Retinal Optical Coherence Tomography (OCT) images, a non-invasive imaging technique, have become a standard retinal disease detection tool. Due to disease, there are morphological and textural changes in the layers of the retina. Classifying OCT images is challenging, as the morphological manifestations of different diseases may be similar. The OCT images capture the reflectivity characteristics of the retinal tissues. Retinal diseases change the reflectivity property of retinal tissues, resulting in texture variations in OCT images. We propose a hybrid approach to OCT image classification in which the Convolution Neural Network (CNN) model is trained using… More >

  • Open Access

    ARTICLE

    Advanced BERT and CNN-Based Computational Model for Phishing Detection in Enterprise Systems

    Brij B. Gupta1,2,3,4,*, Akshat Gaurav5, Varsha Arya6,7, Razaz Waheeb Attar8, Shavi Bansal9, Ahmed Alhomoud10, Kwok Tai Chui11

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2165-2183, 2024, DOI:10.32604/cmes.2024.056473 - 31 October 2024

    Abstract Phishing attacks present a serious threat to enterprise systems, requiring advanced detection techniques to protect sensitive data. This study introduces a phishing email detection framework that combines Bidirectional Encoder Representations from Transformers (BERT) for feature extraction and CNN for classification, specifically designed for enterprise information systems. BERT’s linguistic capabilities are used to extract key features from email content, which are then processed by a convolutional neural network (CNN) model optimized for phishing detection. Achieving an accuracy of 97.5%, our proposed model demonstrates strong proficiency in identifying phishing emails. This approach represents a significant advancement in More >

  • Open Access

    ARTICLE

    Blood Pressure Estimation with Phonocardiogram on CNN-Based Approach

    Kasidit Kokkhunthod1, Khomdet Phapatanaburi2, Wongsathon Pathonsuwan1, Talit Jumphoo1, Patikorn Anchuen3, Porntip Nimkuntod4, Monthippa Uthansakul1, Peerapong Uthansakul1,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1775-1794, 2024, DOI:10.32604/cmc.2024.049276 - 15 May 2024

    Abstract Monitoring blood pressure is a critical aspect of safeguarding an individual’s health, as early detection of abnormal blood pressure levels facilitates timely medical intervention, ultimately leading to a reduction in mortality rates associated with cardiovascular diseases. Consequently, the development of a robust and continuous blood pressure monitoring system holds paramount significance. In the context of this research paper, we introduce an innovative deep learning regression model that harnesses phonocardiogram (PCG) data to achieve precise blood pressure estimation. Our novel approach incorporates a convolutional neural network (CNN)-based regression model, which not only enhances its adaptability to… More >

  • Open Access

    ARTICLE

    Enhancing ChatGPT’s Querying Capability with Voice-Based Interaction and CNN-Based Impair Vision Detection Model

    Awais Ahmad1, Sohail Jabbar1,*, Sheeraz Akram1, Anand Paul2, Umar Raza3, Nuha Mohammed Alshuqayran1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3129-3150, 2024, DOI:10.32604/cmc.2024.045385 - 26 March 2024

    Abstract This paper presents an innovative approach to enhance the querying capability of ChatGPT, a conversational artificial intelligence model, by incorporating voice-based interaction and a convolutional neural network (CNN)-based impaired vision detection model. The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands. Additionally, a CNN-based model is employed to detect impairments in user vision, enabling the system to adapt its responses and provide appropriate assistance. This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence (AI). It underscores our commitment to… More >

  • Open Access

    ARTICLE

    A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images

    Huanhua Liu, Wei Wang*, Hanyu Liu, Shuheng Yi, Yonghao Yu, Xunwen Yao

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 459-472, 2024, DOI:10.32604/cmes.2023.029084 - 22 September 2023

    Abstract Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality images that are not subject to image degradation. In practice, images are often affected by various types of degradation which can significantly impact the performance of CNNs. In this work, we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model (DTA-ICM) to improve the existing CNNs’ classification accuracy on degraded images. The proposed DTA-ICM comprises two key components: a Degradation Type Predictor… More >

  • Open Access

    ARTICLE

    CNN-Based RF Fingerprinting Method for Securing Passive Keyless Entry and Start System

    Hyeon Park1, SeoYeon Kim2, Seok Min Ko1, TaeGuen Kim2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1891-1909, 2023, DOI:10.32604/cmc.2023.039464 - 30 August 2023

    Abstract The rapid growth of modern vehicles with advanced technologies requires strong security to ensure customer safety. One key system that needs protection is the passive key entry system (PKES). To prevent attacks aimed at defeating the PKES, we propose a novel radio frequency (RF) fingerprinting method. Our method extracts the cepstral coefficient feature as a fingerprint of a radio frequency signal. This feature is then analyzed using a convolutional neural network (CNN) for device identification. In evaluation, we conducted experiments to determine the effectiveness of different cepstral coefficient features and the convolutional neural network-based model. More >

  • Open Access

    ARTICLE

    Real-Time CNN-Based Driver Distraction & Drowsiness Detection System

    Abdulwahab Ali Almazroi1,*, Mohammed A. Alqarni2, Nida Aslam3, Rizwan Ali Shah4

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2153-2174, 2023, DOI:10.32604/iasc.2023.039732 - 21 June 2023

    Abstract Nowadays days, the chief grounds of automobile accidents are driver fatigue and distractions. With the development of computer vision technology, a cutting-edge system has the potential to spot driver distractions or sleepiness and alert them, reducing accidents. This paper presents a novel approach to detecting driver tiredness based on eye and mouth movements and object identification that causes a distraction while operating a motor vehicle. Employing the facial landmarks that the camera picks up and sends to classify using a Convolutional Neural Network (CNN) any changes by focusing on the eyes and mouth zone, precision… More >

Displaying 1-10 on page 1 of 23. Per Page