Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    An Explainable Autoencoder-Based Feature Extraction Combined with CNN-LSTM-PSO Model for Improved Predictive Maintenance

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 635-659, 2025, DOI:10.32604/cmc.2025.061062 - 26 March 2025

    Abstract Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries. However, traditional predictive maintenance methods often face challenges in adapting to diverse industrial environments and ensuring the transparency and fairness of their predictions. This paper presents a novel predictive maintenance framework that integrates deep learning and optimization techniques while addressing key ethical considerations, such as transparency, fairness, and explainability, in artificial intelligence driven decision-making. The framework employs an Autoencoder for feature reduction, a Convolutional Neural Network for pattern recognition, and a Long Short-Term Memory network for temporal analysis.… More >

  • Open Access

    ARTICLE

    A Barrier-Based Machine Learning Approach for Intrusion Detection in Wireless Sensor Networks

    Haydar Abdulameer Marhoon1,2,*, Rafid Sagban3,4, Atheer Y. Oudah1,5, Saadaldeen Rashid Ahmed6,7

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4181-4218, 2025, DOI:10.32604/cmc.2025.058822 - 06 March 2025

    Abstract In order to address the critical security challenges inherent to Wireless Sensor Networks (WSNs), this paper presents a groundbreaking barrier-based machine learning technique. Vital applications like military operations, healthcare monitoring, and environmental surveillance increasingly deploy WSNs, recognizing the critical importance of effective intrusion detection in protecting sensitive data and maintaining operational integrity. The proposed method innovatively partitions the network into logical segments or virtual barriers, allowing for targeted monitoring and data collection that aligns with specific traffic patterns. This approach not only improves the diversit. There are more types of data in the training set,… More >

  • Open Access

    ARTICLE

    Optimizing Bearing Fault Detection: CNN-LSTM with Attentive TabNet for Electric Motor Systems

    Alaa U. Khawaja1, Ahmad Shaf2,*, Faisal Al Thobiani3, Tariq Ali4, Muhammad Irfan5, Aqib Rehman Pirzada2, Unza Shahkeel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2399-2420, 2024, DOI:10.32604/cmes.2024.054257 - 31 October 2024

    Abstract Electric motor-driven systems are core components across industries, yet they’re susceptible to bearing faults. Manual fault diagnosis poses safety risks and economic instability, necessitating an automated approach. This study proposes FTCNNLSTM (Fine-Tuned TabNet Convolutional Neural Network Long Short-Term Memory), an algorithm combining Convolutional Neural Networks, Long Short-Term Memory Networks, and Attentive Interpretable Tabular Learning. The model preprocesses the CWRU (Case Western Reserve University) bearing dataset using segmentation, normalization, feature scaling, and label encoding. Its architecture comprises multiple 1D Convolutional layers, batch normalization, max-pooling, and LSTM blocks with dropout, followed by batch normalization, dense layers, and More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM

    Chunming Wu1, Shupeng Zheng2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4395-4411, 2024, DOI:10.32604/cmc.2024.049665 - 20 June 2024

    Abstract Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently. To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios, a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network (MSCNN) and Long Short-Term Memory (LSTM) fused with attention mechanism is proposed. To adaptively extract the essential spatial feature information of various sizes, the model creates a multi-scale feature extraction module using the convolutional neural network (CNN) learning process.… More >

  • Open Access

    ARTICLE

    Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners: A Recommendation System

    Ameni Ellouze1, Nesrine Kadri2, Alaa Alaerjan3,*, Mohamed Ksantini1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 351-372, 2024, DOI:10.32604/cmc.2024.048061 - 25 April 2024

    Abstract Recognizing human activity (HAR) from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases. Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not. Typically, smartphones and their associated sensing devices operate in distributed and unstable environments. Therefore, collecting their data and extracting useful information is a significant challenge. In this context, the aim of this paper is twofold: The first is to analyze human behavior based on the recognition of physical activities. Using the… More >

  • Open Access

    ARTICLE

    The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction

    Ramiz Gorkem Birdal*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4015-4028, 2024, DOI:10.32604/cmc.2024.048324 - 26 March 2024

    Abstract Maintaining a steady power supply requires accurate forecasting of solar irradiance, since clean energy resources do not provide steady power. The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network (CNN), but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions. This paper proposes a hybrid approach based on deep learning, expanding the feature set by adding new air pollution concentrations, and ranking these features to select and reduce their size to improve efficiency. In… More >

  • Open Access

    ARTICLE

    Traffic Flow Prediction with Heterogenous Data Using a Hybrid CNN-LSTM Model

    Jing-Doo Wang1, Chayadi Oktomy Noto Susanto1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3097-3112, 2023, DOI:10.32604/cmc.2023.040914 - 08 October 2023

    Abstract Predicting traffic flow is a crucial component of an intelligent transportation system. Precisely monitoring and predicting traffic flow remains a challenging endeavor. However, existing methods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes, resulting in the loss of essential information and lower forecast performance. On the other hand, the availability of spatiotemporal data is limited. This research offers alternative spatiotemporal data with three specific features as input, vehicle type (5 types), holidays (3 types), and weather (10 conditions). In this study, the proposed model… More >

  • Open Access

    ARTICLE

    A Deep CNN-LSTM-Based Feature Extraction for Cyber-Physical System Monitoring

    Alaa Omran Almagrabi*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2079-2093, 2023, DOI:10.32604/cmc.2023.039683 - 30 August 2023

    Abstract A potential concept that could be effective for multiple applications is a “cyber-physical system” (CPS). The Internet of Things (IoT) has evolved as a research area, presenting new challenges in obtaining valuable data through environmental monitoring. The existing work solely focuses on classifying the audio system of CPS without utilizing feature extraction. This study employs a deep learning method, CNN-LSTM, and two-way feature extraction to classify audio systems within CPS. The primary objective of this system, which is built upon a convolutional neural network (CNN) with Long Short Term Memory (LSTM), is to analyze the… More >

  • Open Access

    ARTICLE

    CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification

    R. D. Dhaniya1, K. M. Umamaheswari2,*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1129-1143, 2023, DOI:10.32604/iasc.2023.035905 - 29 April 2023

    Abstract Current revelations in medical imaging have seen a slew of computer-aided diagnostic (CAD) tools for radiologists developed. Brain tumor classification is essential for radiologists to fully support and better interpret magnetic resonance imaging (MRI). In this work, we reported on new observations based on binary brain tumor categorization using HYBRID CNN-LSTM. Initially, the collected image is pre-processed and augmented using the following steps such as rotation, cropping, zooming, CLAHE (Contrast Limited Adaptive Histogram Equalization), and Random Rotation with panoramic stitching (RRPS). Then, a method called particle swarm optimization (PSO) is used to segment tumor regions More >

  • Open Access

    ARTICLE

    MSCNN-LSTM Model for Predicting Return Loss of the UHF Antenna in HF-UHF RFID Tag Antenna

    Zhao Yang1, Yuan Zhang1, Lei Zhu2,*, Lei Huang1, Fangyu Hu3, Yanping Du1, Xiaowei Li1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2889-2904, 2023, DOI:10.32604/cmc.2023.037297 - 31 March 2023

    Abstract High-frequency (HF) and ultrahigh-frequency (UHF) dual-band radio frequency identification (RFID) tags with both near-field and far-field communication can meet different application scenarios. However, it is time-consuming to calculate the return loss of a UHF antenna in a dual-band tag antenna using electromagnetic (EM) simulators. To overcome this, the present work proposes a model of a multi-scale convolutional neural network stacked with long and short-term memory (MSCNN-LSTM) for predicting the return loss of UHF antennas instead of EM simulators. In the proposed MSCNN-LSTM, the MSCNN has three branches, which include three convolution layers with different kernel… More >

Displaying 1-10 on page 1 of 19. Per Page