Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    Novel Quantum-Integrated CNN Model for Improved Human Activity Recognition in Smart Surveillance

    Tanvir Fatima Naik Bukht1,2, Yanfeng Wu1, Nouf Abdullah Almujally3, Shuoa S. AItarbi4, Hameedur Rahman2, Ahmad Jalal2,5,*, Hui Liu1,6,7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4013-4036, 2025, DOI:10.32604/cmes.2025.071850 - 23 December 2025

    Abstract Human activity recognition (HAR) is crucial in fields like robotics, surveillance, and healthcare, enabling systems to understand and respond to human actions. Current models often struggle with complex datasets, making accurate recognition challenging. This study proposes a quantum-integrated Convolutional Neural Network (QI-CNN) to enhance HAR performance. The traditional models demonstrate weak performance in transferring learned knowledge between diverse complex data collections, including D3D-HOI and Sysu 3D HOI. HAR requires better extraction models and techniques that must address current challenges to achieve improved accuracy and scalability. The model aims to enhance HAR task performance by combining… More >

  • Open Access

    ARTICLE

    Systematic Analysis of Latent Fingerprint Patterns through Fractionally Optimized CNN Model for Interpretable Multi-Output Identification

    Mubeen Sabir1, Zeshan Aslam Khan2,*, Muhammad Waqar2, Khizer Mehmood1, Muhammad Junaid Ali Asif Raja3, Naveed Ishtiaq Chaudhary4, Khalid Mehmood Cheema5, Muhammad Asif Zahoor Raja4, Muhammad Farhan Khan6, Syed Sohail Ahmed7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 807-855, 2025, DOI:10.32604/cmes.2025.068131 - 30 October 2025

    Abstract Fingerprint classification is a biometric method for crime prevention. For the successful completion of various tasks, such as official attendance, banking transactions, and membership requirements, fingerprint classification methods require improvement in terms of accuracy, speed, and the interpretability of non-linear demographic features. Researchers have introduced several CNN-based fingerprint classification models with improved accuracy, but these models often lack effective feature extraction mechanisms and complex multineural architectures. In addition, existing literature primarily focuses on gender classification rather than accurately, efficiently, and confidently classifying hands and fingers through the interpretability of prominent features. This research seeks to… More >

  • Open Access

    ARTICLE

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

    Umit Cigdem Turhal1, Yasemin Onal1,*, Kutalmis Turhal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2307-2332, 2025, DOI:10.32604/cmes.2025.064269 - 30 May 2025

    Abstract The reliability and efficiency of photovoltaic (PV) systems are essential for sustainable energy production, requiring accurate fault detection to minimize energy losses. This study proposes a hybrid model integrating Neighborhood Components Analysis (NCA) with a Convolutional Neural Network (CNN) to improve fault detection and diagnosis. Unlike Principal Component Analysis (PCA), which may compromise class relationships during feature extraction, NCA preserves these relationships, enhancing classification performance. The hybrid model combines NCA with CNN, a fundamental deep learning architecture, to enhance fault detection and diagnosis capabilities. The performance of the proposed NCA-CNN model was evaluated against other More > Graphic Abstract

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

  • Open Access

    ARTICLE

    Oversampling-Enhanced Feature Fusion-Based Hybrid ViT-1DCNN Model for Ransomware Cyber Attack Detection

    Muhammad Armghan Latif1, Zohaib Mushtaq2,*, Saifur Rahman3, Saad Arif4, Salim Nasar Faraj Mursal3, Muhammad Irfan3, Haris Aziz5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1667-1695, 2025, DOI:10.32604/cmes.2024.056850 - 27 January 2025

    Abstract Ransomware attacks pose a significant threat to critical infrastructures, demanding robust detection mechanisms. This study introduces a hybrid model that combines vision transformer (ViT) and one-dimensional convolutional neural network (1DCNN) architectures to enhance ransomware detection capabilities. Addressing common challenges in ransomware detection, particularly dataset class imbalance, the synthetic minority oversampling technique (SMOTE) is employed to generate synthetic samples for minority class, thereby improving detection accuracy. The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features, resulting in comprehensive ransomware classification. Tested on the UNSW-NB15 More >

  • Open Access

    ARTICLE

    Prairie Araneida Optimization Based Fused CNN Model for Intrusion Detection

    Nishit Patil, Shubhalaxmi Joshi*

    Computer Systems Science and Engineering, Vol.49, pp. 49-77, 2025, DOI:10.32604/csse.2024.057702 - 03 January 2025

    Abstract Intrusion detection (ID) is a cyber security practice that encompasses the process of monitoring network activities to identify unauthorized or malicious actions. This includes problems like the difficulties of existing intrusion detection models to identify emerging attacks, generating many false alarms, and their inability and difficulty to adapt themselves with time when it comes to threats, hence to overcome all those existing challenges in this research develop a Prairie Araneida optimization based fused Convolutional Neural Network model (PAO-CNN) for intrusion detection. The fused CNN (Convolutional Neural Netowrk) is a remarkable development since it combines statistical… More >

  • Open Access

    ARTICLE

    Emotion Detection Using ECG Signals and a Lightweight CNN Model

    Amita U. Dessai*, Hassanali G. Virani

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1193-1211, 2024, DOI:10.32604/csse.2024.052710 - 13 September 2024

    Abstract Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction (HCI). However, physical methods of emotion recognition such as facial expressions, voice, and text data, do not always indicate true emotions, as users can falsify them. Among the physiological methods of emotion detection, Electrocardiogram (ECG) is a reliable and efficient way of detecting emotions. ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments. Researchers use deep machine learning techniques for emotion recognition using ECG signals, but there is a need to develop efficient models… More >

  • Open Access

    ARTICLE

    GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI

    Md. Atiqur Rahman1, Mustavi Ibne Masum1, Khan Md Hasib2, M. F. Mridha3,*, Sultan Alfarhood4, Mejdl Safran4,*, Dunren Che5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2425-2448, 2024, DOI:10.32604/cmes.2024.050760 - 08 July 2024

    Abstract Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model, Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research utilized the BraTS 2020 More >

  • Open Access

    ARTICLE

    KurdSet: A Kurdish Handwritten Characters Recognition Dataset Using Convolutional Neural Network

    Sardar Hasen Ali*, Maiwan Bahjat Abdulrazzaq

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 429-448, 2024, DOI:10.32604/cmc.2024.048356 - 25 April 2024

    Abstract Handwritten character recognition (HCR) involves identifying characters in images, documents, and various sources such as forms surveys, questionnaires, and signatures, and transforming them into a machine-readable format for subsequent processing. Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle. The use of convolutional neural network (CNN) in recent developments has notably advanced HCR, leveraging the ability to extract discriminative features from extensive sets of raw data. Because of the absence of pre-existing datasets in the Kurdish language, we created a Kurdish handwritten dataset called (KurdSet). The dataset consists of Kurdish characters, digits,… More >

  • Open Access

    ARTICLE

    Speech Recognition via CTC-CNN Model

    Wen-Tsai Sung1, Hao-Wei Kang1, Sung-Jung Hsiao2,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3833-3858, 2023, DOI:10.32604/cmc.2023.040024 - 08 October 2023

    Abstract In the speech recognition system, the acoustic model is an important underlying model, and its accuracy directly affects the performance of the entire system. This paper introduces the construction and training process of the acoustic model in detail and studies the Connectionist temporal classification (CTC) algorithm, which plays an important role in the end-to-end framework, established a convolutional neural network (CNN) combined with an acoustic model of Connectionist temporal classification to improve the accuracy of speech recognition. This study uses a sound sensor, ReSpeaker Mic Array v2.0.1, to convert the collected speech signals into text… More >

  • Open Access

    ARTICLE

    Automated Classification of Snow-Covered Solar Panel Surfaces Based on Deep Learning Approaches

    Abdullah Ahmed Al-Dulaimi1,*, Muhammet Tahir Guneser1, Alaa Ali Hameed2, Mohammad Shukri Salman3

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2291-2319, 2023, DOI:10.32604/cmes.2023.026065 - 09 March 2023

    Abstract Recently, the demand for renewable energy has increased due to its environmental and economic needs. Solar panels are the mainstay for dealing with solar energy and converting it into another form of usable energy. Solar panels work under suitable climatic conditions that allow the light photons to access the solar cells, as any blocking of sunlight on these cells causes a halt in the panels work and restricts the carry of these photons. Thus, the panels are unable to work under these conditions. A layer of snow forms on the solar panels due to snowfall… More > Graphic Abstract

    Automated Classification of Snow-Covered Solar Panel Surfaces Based on Deep Learning Approaches

Displaying 1-10 on page 1 of 27. Per Page