Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,450)
  • Open Access

    REVIEW

    Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods

    Daixuan Zhou1, Yujin Liu1, Xu Wang2, Fuxing Wang1, Yan Jia2,*

    Energy Engineering, Vol.121, No.12, pp. 3573-3616, 2024, DOI:10.32604/ee.2024.055853 - 22 November 2024

    Abstract With the increasing proportion of renewable energy in China’s energy structure, among which photovoltaic power generation is also developing rapidly. As the photovoltaic (PV) power output is highly unstable and subject to a variety of factors, it brings great challenges to the stable operation and dispatch of the power grid. Therefore, accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy. Currently, the short-term prediction of PV power has received extensive attention and research, but the accuracy and precision of the prediction have to be further improved. More > Graphic Abstract

    Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods

  • Open Access

    ARTICLE

    Software Cost Estimation Using Social Group Optimization

    Sagiraju Srinadhraju*, Samaresh Mishra, Suresh Chandra Satapathy

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1641-1668, 2024, DOI:10.32604/csse.2024.055612 - 22 November 2024

    Abstract This paper introduces the integration of the Social Group Optimization (SGO) algorithm to enhance the accuracy of software cost estimation using the Constructive Cost Model (COCOMO). COCOMO’s fixed coefficients often limit its adaptability, as they don’t account for variations across organizations. By fine-tuning these parameters with SGO, we aim to improve estimation accuracy. We train and validate our SGO-enhanced model using historical project data, evaluating its performance with metrics like the mean magnitude of relative error (MMRE) and Manhattan distance (MD). Experimental results show that SGO optimization significantly improves the predictive accuracy of software cost More >

  • Open Access

    ARTICLE

    Evaluating Public Sentiments during Uttarakhand Flood: An Artificial Intelligence Techniques

    Stephen Afrifa1,2,*, Vijayakumar Varadarajan3,4,5,*, Peter Appiahene2, Tao Zhang1, Richmond Afrifa6

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1625-1639, 2024, DOI:10.32604/csse.2024.055084 - 22 November 2024

    Abstract Users of social networks can readily express their thoughts on websites like Twitter (now X), Facebook, and Instagram. The volume of textual data flowing from users has greatly increased with the advent of social media in comparison to traditional media. For instance, using natural language processing (NLP) methods, social media can be leveraged to obtain crucial information on the present situation during disasters. In this work, tweets on the Uttarakhand flash flood are analyzed using a hybrid NLP model. This investigation employed sentiment analysis (SA) to determine the people’s expressed negative attitudes regarding the disaster. More >

  • Open Access

    ARTICLE

    An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features

    Saad M. Darwish1,*, Abdul Rahman M. Sabri2, Dhafar Hamed Abd2, Adel A. Elzoghabi1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1595-1624, 2024, DOI:10.32604/csse.2024.054615 - 22 November 2024

    Abstract The number of blogs and other forms of opinionated online content has increased dramatically in recent years. Many fields, including academia and national security, place an emphasis on automated political article orientation detection. Political articles (especially in the Arab world) are different from other articles due to their subjectivity, in which the author’s beliefs and political affiliation might have a significant influence on a political article. With categories representing the main political ideologies, this problem may be thought of as a subset of the text categorization (classification). In general, the performance of machine learning models… More >

  • Open Access

    REVIEW

    Discrete Choice Models and Artificial Intelligence Techniques for Predicting the Determinants of Transport Mode Choice—A Systematic Review

    Mujahid Ali*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2161-2194, 2024, DOI:10.32604/cmc.2024.058888 - 18 November 2024

    Abstract Forecasting travel demand requires a grasp of individual decision-making behavior. However, transport mode choice (TMC) is determined by personal and contextual factors that vary from person to person. Numerous characteristics have a substantial impact on travel behavior (TB), which makes it important to take into account while studying transport options. Traditional statistical techniques frequently presume linear correlations, but real-world data rarely follows these presumptions, which may make it harder to grasp the complex interactions. Thorough systematic review was conducted to examine how machine learning (ML) approaches might successfully capture nonlinear correlations that conventional methods may… More >

  • Open Access

    ARTICLE

    AI-Driven Prioritization and Filtering of Windows Artifacts for Enhanced Digital Forensics

    Juhwan Kim, Baehoon Son, Jihyeon Yu, Joobeom Yun*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3371-3393, 2024, DOI:10.32604/cmc.2024.057234 - 18 November 2024

    Abstract Digital forensics aims to uncover evidence of cybercrimes within compromised systems. These cybercrimes are often perpetrated through the deployment of malware, which inevitably leaves discernible traces within the compromised systems. Forensic analysts are tasked with extracting and subsequently analyzing data, termed as artifacts, from these systems to gather evidence. Therefore, forensic analysts must sift through extensive datasets to isolate pertinent evidence. However, manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive. Previous studies addressed such inefficiencies by integrating artificial intelligence (AI) technologies into digital forensics. Despite the efforts in previous studies, artifacts were… More >

  • Open Access

    REVIEW

    AI-Driven Pattern Recognition in Medicinal Plants: A Comprehensive Review and Comparative Analysis

    Mohd Asif Hajam1, Tasleem Arif1, Akib Mohi Ud Din Khanday2, Mudasir Ahmad Wani3,*, Muhammad Asim3,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2077-2131, 2024, DOI:10.32604/cmc.2024.057136 - 18 November 2024

    Abstract The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and cost-effectiveness compared to modern drugs. Throughout the extensive history of medicinal plant usage, various plant parts, including flowers, leaves, and roots, have been acknowledged for their healing properties and employed in plant identification. Leaf images, however, stand out as the preferred and easily accessible source of information. Manual plant identification by plant taxonomists is intricate, time-consuming, and prone to errors, relying heavily on human perception. Artificial intelligence (AI) techniques offer a solution by automating plant recognition processes. This study thoroughly examines cutting-edge… More >

  • Open Access

    ARTICLE

    Special Vehicle Target Detection and Tracking Based on Virtual Simulation Environment and YOLOv5-Block+DeepSort Algorithm

    Mingyuan Zhai1,2, Hanquan Zhang1, Le Wang1, Dong Xiao1,*, Zhengmin Gu3, Zhenni Li1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3241-3260, 2024, DOI:10.32604/cmc.2024.056241 - 18 November 2024

    Abstract In the process of dense vehicles traveling fast, there will be mutual occlusion between vehicles, which will lead to the problem of deterioration of the tracking effect of different vehicles, so this paper proposes a research method of virtual simulation video vehicle target tracking based on you only look once (YOLO)v5s and deep simple online and realtime tracking (DeepSort). Given that the DeepSort algorithm is currently the most effective tracking method, this paper merges the YOLOv5 algorithm with the DeepSort algorithm. Then it adds the efficient channel attention networks (ECA-Net) focusing mechanism at the back… More >

  • Open Access

    ARTICLE

    LDNet: A Robust Hybrid Approach for Lie Detection Using Deep Learning Techniques

    Shanjita Akter Prome1, Md Rafiqul Islam2,*, Md. Kowsar Hossain Sakib1, David Asirvatham1, Neethiahnanthan Ari Ragavan3, Cesar Sanin2, Edward Szczerbicki4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2845-2871, 2024, DOI:10.32604/cmc.2024.055311 - 18 November 2024

    Abstract Deception detection is regarded as a concern for everyone in their daily lives and affects social interactions. The human face is a rich source of data that offers trustworthy markers of deception. The deception or lie detection systems are non-intrusive, cost-effective, and mobile by identifying facial expressions. Over the last decade, numerous studies have been conducted on deception detection using several advanced techniques. Researchers have focused their attention on inventing more effective and efficient solutions for the detection of deception. So, it could be challenging to spot trends, practical approaches, gaps, and chances for contribution.… More >

  • Open Access

    ARTICLE

    CES1 is associated with cisplatin resistance and poor prognosis of head and neck squamous cell carcinoma

    CHUAN JIANG1,2, CHUNLEI LIU1,3, XI YAO1,3, JINGYA SU1,2, WEI LU1,3, ZHENGBO WEI3,*, YING XIE1,2,*

    Oncology Research, Vol.32, No.12, pp. 1935-1948, 2024, DOI:10.32604/or.2024.052244 - 13 November 2024

    Abstract Background: Head and neck squamous cell carcinoma (HNSCC) is a prevalent form of cancer globally, with chemoresistance posing a major challenge in treatment outcomes. The efficacy of the commonly used chemotherapeutic agent, cisplatin, is diminished in patients with poor prognoses. Methods: Various bioinformatics databases were utilized to examine Carboxylesterase 1 (CES1) gene expression, clinicopathologic features, patient survival analysis, and gene function. An organoid model of HNSCC was established, along with the induction of drug-resistant HNSCC in the organoid model. CES1 expression was assessed using qRT-PCR and Western Blot, and differential markers were identified through transcriptome… More >

Displaying 1-10 on page 1 of 1450. Per Page