Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (191)
  • Open Access

    ARTICLE

    Ventilation Velocity vs. Airborne Infection Risk: A Combined CFD and Field Study of CO2 and Viral Aerosols

    Chuhan Zhao1,*, Souad Morsli2, Laurent Caramelle3, Mohammed El Ganaoui3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 2001-2025, 2025, DOI:10.32604/fdmp.2025.068093 - 12 September 2025

    Abstract Carbon dioxide (CO2) is often monitored as a convenient yardstick for indoor air safety, yet its ability to stand in for pathogen-laden aerosols has never been settled. To probe the question, we reproduced an open-plan office at full scale (7.2 m 5.2 m 2.8 m) and introduced a breathing plume that carried 4% CO2, together with a polydisperse aerosol spanning 0.5–10 m (1320 particles s−1). Inlet air was supplied at 0.7, 1.4, and 2.1 m s−1, and the resulting fields were simulated with a Realisable – RANS model coupled to Lagrangian particle tracking. Nine strategically placed probes… More >

  • Open Access

    REVIEW

    The Convergence of Computational Fluid Dynamics and Machine Learning in Oncology: A Review

    Wan Mohd Faizal1,2,*, Nurul Musfirah Mazlan1,*, Shazril Imran Shaukat3,4, Chu Yee Khor2, Ab Hadi Mohd Haidiezul2, Abdul Khadir Mohamad Syafiq2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1335-1369, 2025, DOI:10.32604/cmes.2025.068660 - 31 August 2025

    Abstract Conventional oncology faces challenges such as suboptimal drug delivery, tumor heterogeneity, and therapeutic resistance, indicating a need for more personalized, and mechanistically grounded and predictive treatment strategies. This review explores the convergence of Computational Fluid Dynamics (CFD) and Machine Learning (ML) as an integrated framework to address these issues in modern cancer therapy. The paper discusses recent advancements where CFD models simulate complex tumor microenvironmental conditions, like interstitial fluid pressure (IFP) and drug perfusion, and ML enhances simulation workflows, automates image-based segmentation, and enhances predictive accuracy. The synergy between CFD and ML improves scalability and More >

  • Open Access

    ARTICLE

    Numerical Simulation and Experimental Study of Self-Supplied Aerostatic Air Float Piston in Miniature Linear Compressor

    Haifeng Zhu1,*, Zhenyu Chen1,*, Teng Lu1, Xiaoqin Zhi2

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1303-1321, 2025, DOI:10.32604/fhmt.2025.065830 - 29 August 2025

    Abstract To meet the demand for miniaturized, compact, high-reliability, and long-life cryocoolers in small satellite platforms, the development of a linear Stirling cryocooler has been undertaken. Computational Fluid Dynamics (CFD) numerical simulation software was used to conduct simulation analyses, verifying the impact of porous media channel layout, eccentricity, viscous resistance coefficient of the porous media, and piston position on the designed aerostatic bearing piston employing self-supplied gas bearing technology. The calculation results indicate that both the aerostatic force and leakage increase synchronously with eccentricity, while the two designed gas lift channel layouts are capable of providing… More >

  • Open Access

    ARTICLE

    CFD Modeling to Evaluate User Safety by Using Flame Retardants in Asphalt Road Pavements during Large Tunnel Fires

    Ciro Caliendo, Isidoro Russo*, Gianluca Genovese

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 693-715, 2025, DOI:10.32604/cmes.2025.068123 - 31 July 2025

    Abstract Road pavements in tunnels are usually made of asphalt mixtures, which, unfortunately, are flammable materials. Hence, this type of pavement could release heat, and more specifically smoke, in the event of a tunnel fire, thereby worsening the environmental conditions for human health. Extensive research has been conducted in recent years to enhance the fire reaction of traditional asphalt mixtures for the road pavements used in tunnels. The addition of the Flame Retardants (FRs) in conventional asphalt mixtures appears to be promising. Nevertheless, the potential effects of the FRs in terms of the reduction in consequences… More > Graphic Abstract

    CFD Modeling to Evaluate User Safety by Using Flame Retardants in Asphalt Road Pavements during Large Tunnel Fires

  • Open Access

    ARTICLE

    CFD-Based Optimization of Aerodynamic Noise in High-Speed Hair Dryer Flow Channels

    Ya Li1,*, Min Deng2, Shanyi Hao3, Yucong Lin1, Yu Lu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1611-1622, 2025, DOI:10.32604/fdmp.2025.067497 - 31 July 2025

    Abstract The noise generated by high-speed hair dryers significantly affects user experience, with aerodynamic design playing a crucial role in controlling sound emissions. This study investigates the aerodynamic noise characteristics of a commercial high-speed hair dryer through Computational Fluid Dynamics (CFD) analysis. The velocity field, streamline patterns, and vector distribution within the primary flow path and internal cavity were systematically examined. Results indicate that strong interactions between the wake flow generated by the guide vanes and the straight baffle in the rear flow path induce vortex structures near the outlet, which are primarily responsible for high-frequency More >

  • Open Access

    ARTICLE

    A Comparative Study on Hydrodynamic Optimization Approaches for AUV Design Using CFD

    KL Vasudev1, Manish Pandey2, Jaan H. Pu3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1545-1569, 2025, DOI:10.32604/fdmp.2025.065289 - 31 July 2025

    Abstract This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles (AUVs), paying special attention to drag, lift-to-drag ratio, and delivered power. A fully integrated optimisation framework is developed accordingly, combining a single-objective Genetic Algorithm (GA) for design parameter generation, Computer-Aided Geometric Design (CAGD) for the creation of hull geometries and associated fluid domains, and a Reynolds-Averaged Navier–Stokes (RANS) solver for evaluating hydrodynamic performance metrics. This unified approach eliminates manual intervention, enabling automated determination of optimal hull configurations. Three distinct optimisation problems are addressed using the proposed methodology. First,… More >

  • Open Access

    ARTICLE

    Optimal Design of Intake System for Racing Engine

    Yang Sun1, Runze Yang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1737-1751, 2025, DOI:10.32604/fdmp.2025.063103 - 31 July 2025

    Abstract The intake system of a racing engine plays a crucial role in determining its performance, particularly in terms of volumetric efficiency, power output, and throttle response. According to Formula Society of Automotive Engineers (FSAE) regulations, the engine intake system must incorporate a 20 mm diameter flow-limiting valve within the intake manifold. This restriction significantly reduces the airflow into the engine, leading to a substantial drop in power output. To mitigate this limitation, the intake system requires a redesign. In this study, theoretical calculations and one-dimensional thermodynamic simulations are employed to determine the optimal parameters for… More >

  • Open Access

    ARTICLE

    Relevant Fluid Dynamics Aspects of the Internal Ballistics in a Small-Scale Hybrid Thruster

    Sergio Cassese1, Riccardo Guida2,3,*, Daniele Trincone1, Stefano Mungiguerra1, Raffaele Savino1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1299-1337, 2025, DOI:10.32604/fdmp.2025.065605 - 30 June 2025

    Abstract Robust numerical tools are essential for enabling the use of hybrid rocket engines (HREs) in future space applications. In this context, Computational Fluid Dynamics (CFD) transient simulations can be employed to analyse and predict relevant fluid dynamics phenomena within the thrust chamber of small-scale HREs. This work applies such techniques to investigate two unexpected behaviours observed in a 10 N-class hydrogen peroxide-based hybrid thruster: an uneven regression rate during High-Density Polyethylene (HDPE) and Acrylonitrile Butadiene Styrene (ABS) fuel tests, and non-negligible axial consumption in the ABS test case. The present study seeks to identify their… More >

  • Open Access

    ARTICLE

    Enhancing Hydrothermal Performance of Dimpled Tubes: Investigating the Impact of Different Dimple Sizes and Distribution along the Tube

    Basima Salman Khalaf*, Abeer H. Falih, Basim Freegah

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 943-956, 2025, DOI:10.32604/fhmt.2025.065366 - 30 June 2025

    Abstract The main purpose of this research is to optimize the hydrothermal performance of a dimpled tube by augmenting the surface area for heat transmission and thermal layer cracking. To achieve that, the impact of different dimple diameters and their distribution along the dimpled tube was investigated numerically using the ANSYS Fluent 2022 R1 software by considering two models, A and B. Both models consist of three regions; the first, second, and third have dimple diameters of 3, 2, & 1 mm, respectively. Model A included an in-line dimple arrangement, while model B involved a staggered… More >

  • Open Access

    ARTICLE

    Effects of Soil Properties on the Diffusion of Hydrogen-Blended Natural Gas from an Underground Pipe

    Shiyao Peng1, Hanwen Zhang1, Chong Chai1, Shilong Xue2, Xiaobin Zhang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1099-1112, 2025, DOI:10.32604/fdmp.2025.060452 - 30 May 2025

    Abstract The diffusion of hydrogen-blended natural gas (HBNG) from buried pipelines in the event of a leak is typically influenced by soil properties, including porosity, particle size, temperature distribution, relative humidity, and the depth of the pipeline. This study models the soil as an isotropic porous medium and employs a CFD-based numerical framework to simulate gas propagation, accounting for the coupled effects of soil temperature and humidity. The model is rigorously validated against experimental data on natural gas diffusion in soil. It is then used to explore the impact of relevant parameters on the diffusion behavior… More >

Displaying 11-20 on page 2 of 191. Per Page