Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Finding the Generalized SolitaryWave Solutions within the (G'/G)-Expansion Method

    K. Sayevand1, Yasir Khan2, E. Moradi3, M. Fardi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.5, pp. 361-373, 2015, DOI:10.3970/cmes.2015.105.361

    Abstract In this study, the solitary wave solutions for third order equal-width wave-Burgers (EW-Burgers) equation, the second order Bratu and sinh-Bratu type equations will be discussed. The EW-Burgers equation models the propagation of nonlinear and dispersive waves with certain dissipative effects and furthermore the Bratu type problem appears a simplification of the solid fuel ignition model in thermal combustion theory. Our methodology, is investigated by using (G'/G)- expansion method. The obtained results can be extended to the other models. More >

  • Open Access

    ARTICLE

    A Three-point Coupled Compact Integrated RBF Scheme for Second-order Differential Problems

    C.M.T. Tien1, N. Thai-Quang1, N. Mai-Duy1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.6, pp. 425-469, 2015, DOI:10.3970/cmes.2015.104.425

    Abstract In this paper, we propose a three-point coupled compact integrated radial basis function (CCIRBF) approximation scheme for the discretisation of second-order differential problems in one and two dimensions. The CCIRBF employs integrated radial basis functions (IRBFs) to construct the approximations for its first and second derivatives over a three-point stencil in each direction. Nodal values of the first and second derivatives (i.e. extra information), incorporated into approximations by means of the constants of integration, are simultaneously employed to compute the first and second derivatives. The essence of the CCIRBF scheme is to couple the extra… More >

  • Open Access

    ARTICLE

    An Approach with HaarWavelet Collocation Method for Numerical Simulations of Modified KdV and Modified Burgers Equations

    S. Saha Ray1, A. K. Gupta2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.5, pp. 315-341, 2014, DOI:10.3970/cmes.2014.103.315

    Abstract In this paper, an efficient numerical schemes based on the Haar wavelet method are applied for finding numerical solution of nonlinear third-order modified Korteweg-de Vries (mKdV) equation as well as modified Burgers' equations. The numerical results are then compared with the exact solutions. The accuracy of the obtained solutions is quite high even if the number of calculation points is small. More >

  • Open Access

    ARTICLE

    A High-Order Finite-Difference Scheme with a Linearization Technique for Solving of Three-Dimensional Burgers Equation

    M.D. Campos1, E.C. Romão2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.3, pp. 139-154, 2014, DOI:10.3970/cmes.2014.103.139

    Abstract The objective of this paper aims to present a numerical solution of high accuracy and low computational cost for the three-dimensional Burgers equations. It is a well-known problem and studied the form for one and two-dimensional, but still little explored numerically for three-dimensional problems. Here, by using the High-Order Finite Difference Method for spatial discretization, the Crank-Nicolson method for time discretization and an efficient linearization technique with low computational cost, two numerical applications are used to validate the proposed formulation. In order to analyze the numerical error of the proposed formulation, an unpublished exact solution More >

  • Open Access

    ARTICLE

    The Fictitious Time Integration Method to Solve the Space- and Time-Fractional Burgers Equations

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.15, No.3, pp. 221-240, 2010, DOI:10.3970/cmc.2010.015.221

    Abstract We propose a simple numerical scheme for solving the space- and time-fractional derivative Burgers equations: Dtαu + εuux = vuxx + ηDxβu, 0 < α, β ≤ 1, and ut + D*β(D*1-βu)2/2 = vuxx, 0 < β ≤ 1. The time-fractional derivative Dtαu and space-fractional derivative Dxβu are defined in the Caputo sense, while D*βu is the Riemann-Liouville space-fractional derivative. A fictitious time τ is used to transform the dependent variable u(x,t) into a new one by (1+τ)γu(x,t) =: v(x,t,τ), where 0 < γ ≤ 1 is a parameter, such that the original equation is written as a new functional-differential type partial differential equation More >

  • Open Access

    ARTICLE

    A Fictitious Time Integration Method for the Burgers Equation

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.9, No.3, pp. 229-252, 2009, DOI:10.3970/cmc.2009.009.229

    Abstract When the given input data are corrupted by an intensive noise, most numerical methods may fail to produce acceptable numerical solutions. Here, we propose a new numerical scheme for solving the Burgers equation forward in time and backward in time. A fictitious time τ is used to transform the dependent variable u(x,t) into a new one by (1+τ )u(x,t) =: v(x,t,τ), such that the original Burgers equation is written as a new parabolic type partial differential equation in the space of (x,t,τ). A fictitious damping coefficient can be used to strengthen the stability in the numerical integration… More >

  • Open Access

    ARTICLE

    A New High-order Time-kernel BIEM for the Burgers Equation

    N. Mai-Duy1,2, T. Tran-Cong2, R.I. Tanner3

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.3, pp. 177-186, 2006, DOI:10.3970/cmes.2006.016.177

    Abstract This paper presents a new high-order time-kernel boundary-integral-equation method (BIEM) for numerically solving transient problems governed by the Burgers equation. Instead of using high-order Lagrange polynomials such as quadratic and quartic interpolation functions, the proposed method employs integrated radial-basis-function networks (IRBFNs) to represent the unknown functions in boundary and volume integrals. Numerical implementations of ordinary and double integrals involving time in the presence of IRBFNs are discussed in detail. The proposed method is verified through the solution of diffusion and convection-diffusion problems. A comparison of the present results and those obtained by low-order BIEMs and More >

  • Open Access

    ARTICLE

    A Group Preserving Scheme for Burgers Equation with Very Large Reynolds Number

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.3, pp. 197-212, 2006, DOI:10.3970/cmes.2006.012.197

    Abstract In this paper we numerically solve the Burgers equation by semi-discretizing it at the n interior spatial grid points into a set of ordinary differential equations: u· = f(u,t), u ∈ Rn. Then, we take the dissipative behavior of Burgers equation into account by considering the magnitude ||u|| as another component; hence, an augmented quasilinear differential equations system X˙ = AX with X := (uT,||u||)T ∈ Mn+1 is derived. According to a Lie algebra property of A∈so(n,1) we thus develop a new numerical scheme with the transformation matrix G∈SOo(n,1) being an element of the proper orthochronous Lorentz group. More >

  • Open Access

    ARTICLE

    An Efficient Backward Group Preserving Scheme for the Backward in Time Burgers Equation

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.1, pp. 55-66, 2006, DOI:10.3970/cmes.2006.012.055

    Abstract In this paper we are concerned with the numerical integration of Burgers equation backward in time. We construct a one-step backward group preserving scheme (BGPS) for the semi-discretization of Burgers equation. The one-step BGPS is very effectively to calculate the solution at an initial time t = 0 from a given final data at t = T, which with a time stepsize equal to T and with a suitable grid length produces a highly accurate solution never seen before. Under noisy final data the BGPS is also robust to against the disturbance. When the solution appears steep gradient, More >

Displaying 1-10 on page 1 of 9. Per Page