Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Numerical Analysis of the Influence of Buoyancy Ratio and Dufour Parameter on Thermosolutal Convection in a Square Salt Gradient Solar Pond

    Yassmine Rghif1,*, Belkacem Zeghmati2, Fatima Bahraoui1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1319-1329, 2022, DOI:10.32604/fdmp.2022.021500 - 27 May 2022

    Abstract This work aims to investigate numerically the influence of the buoyancy ratio and the Dufour parameter on thermosolutal convection in a square Salt Gradient Solar Pond (SGSP). The absorption of solar radiation by the saline water, the heat losses and the wind effects via the SGSP free surface are considered. The mathematical model is based on the Navier-Stokes equations used in synergy with the thermal energy equation. These equations are solved using the finite volume method and the Gauss algorithm. Velocity-pressure coupling is implemented through the SIMPLE algorithm. Simulations of the SGSP are performed for… More >

  • Open Access

    ARTICLE

    BUOYANCY RATIO AND HEAT SOURCE EFFECTS ON MHD FLOW OVER AN INCLINED NON-LINEARLY STRETCHING SHEET

    Thirupathi Thummaa,*, M.D. Shamshuddinb

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-12, 2018, DOI:10.5098/hmt.10.5

    Abstract This paper numerically investigates the magnetohydrodynamic boundary layer convective flow of an electrically conducting fluid in the presence of buoyancy ratio, heat source, variable magnetic field and radiation over an inclined nonlinear stretching sheet under convective surface boundary conditions. The Rosseland approximation is adopted for thermal radiation effects and the non-uniform magnetic field applied in a transverse direction to the flow. The coupled nonlinear momentum, thermal and species concentration governing boundary layer equations are rendered into a system of third order momentum and second order energy and mass diffusion ordinary differential equations via similarity transformations… More >

  • Open Access

    ARTICLE

    FINITE ELEMENT STUDY OF DDNC IN BOTTOM HEATED ENCLOSURES WITH MASS DIFFUSIVE SIDE WALLS

    Nithish Reddy* , K. Murugesan

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.7

    Abstract In this paper DDNC phenomenon in a bottom heated enclosure exposed to mass diffusion from its side walls is investigated numerically. The interplay between thermal and solutal buoyancy forces on fluid circulation and heat transfer rates is studied in three different enclosures of aspect ratios 0.5, 1.0 and 2.0. Finite element base numerical code has used to solve the governing equations, here velocity and vorticity are taken as primary variables for flow field. Numerical results are well validated with that of the literature. The relative strength of solutal to thermal buoyancy forces is defined by… More >

Displaying 1-10 on page 1 of 3. Per Page