Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    ARTICLE

    Leveraging EfficientNetB3 in a Deep Learning Framework for High-Accuracy MRI Tumor Classification

    Mahesh Thyluru Ramakrishna1, Kuppusamy Pothanaicker2, Padma Selvaraj3, Surbhi Bhatia Khan4,7,*, Vinoth Kumar Venkatesan5, Saeed Alzahrani6, Mohammad Alojail6

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 867-883, 2024, DOI:10.32604/cmc.2024.053563 - 15 October 2024

    Abstract Brain tumor is a global issue due to which several people suffer, and its early diagnosis can help in the treatment in a more efficient manner. Identifying different types of brain tumors, including gliomas, meningiomas, pituitary tumors, as well as confirming the absence of tumors, poses a significant challenge using MRI images. Current approaches predominantly rely on traditional machine learning and basic deep learning methods for image classification. These methods often rely on manual feature extraction and basic convolutional neural networks (CNNs). The limitations include inadequate accuracy, poor generalization of new data, and limited ability… More >

  • Open Access

    ARTICLE

    GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI

    Md. Atiqur Rahman1, Mustavi Ibne Masum1, Khan Md Hasib2, M. F. Mridha3,*, Sultan Alfarhood4, Mejdl Safran4,*, Dunren Che5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2425-2448, 2024, DOI:10.32604/cmes.2024.050760 - 08 July 2024

    Abstract Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model, Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research utilized the BraTS 2020 More >

  • Open Access

    ARTICLE

    Research on Multi-Scale Feature Fusion Network Algorithm Based on Brain Tumor Medical Image Classification

    Yuting Zhou1, Xuemei Yang1, Junping Yin2,3,4,*, Shiqi Liu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5313-5333, 2024, DOI:10.32604/cmc.2024.052060 - 20 June 2024

    Abstract Gliomas have the highest mortality rate of all brain tumors. Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’ survival rates. This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network (HMAC-Net), which effectively combines global features and local features. The network framework consists of three parallel layers: The global feature extraction layer, the local feature extraction layer, and the multi-scale feature fusion layer. A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy. In the local feature… More >

  • Open Access

    ARTICLE

    Multiscale and Auto-Tuned Semi-Supervised Deep Subspace Clustering and Its Application in Brain Tumor Clustering

    Zhenyu Qian1, Yizhang Jiang1, Zhou Hong1, Lijun Huang2, Fengda Li3, KhinWee Lai6, Kaijian Xia4,5,6,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4741-4762, 2024, DOI:10.32604/cmc.2024.050920 - 20 June 2024

    Abstract In this paper, we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering (MAS-DSC) algorithm, aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data, particularly in the field of medical imaging. Traditional deep subspace clustering algorithms, which are mostly unsupervised, are limited in their ability to effectively utilize the inherent prior knowledge in medical images. Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process, thereby enhancing the discriminative power of the feature representations. Additionally, the multi-scale feature extraction… More > Graphic Abstract

    Multiscale and Auto-Tuned Semi-Supervised Deep Subspace Clustering and Its Application in Brain Tumor Clustering

  • Open Access

    ARTICLE

    Contrast Normalization Strategies in Brain Tumor Imaging: From Preprocessing to Classification

    Samar M. Alqhtani1, Toufique A. Soomro2,*, Faisal Bin Ubaid3, Ahmed Ali4, Muhammad Irfan5, Abdullah A. Asiri6

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1539-1562, 2024, DOI:10.32604/cmes.2024.051475 - 20 May 2024

    Abstract Cancer-related to the nervous system and brain tumors is a leading cause of mortality in various countries. Magnetic resonance imaging (MRI) and computed tomography (CT) are utilized to capture brain images. MRI plays a crucial role in the diagnosis of brain tumors and the examination of other brain disorders. Typically, manual assessment of MRI images by radiologists or experts is performed to identify brain tumors and abnormalities in the early stages for timely intervention. However, early diagnosis of brain tumors is intricate, necessitating the use of computerized methods. This research introduces an innovative approach for… More > Graphic Abstract

    Contrast Normalization Strategies in Brain Tumor Imaging: From Preprocessing to Classification

  • Open Access

    CORRECTION

    Correction: An Effective Diagnosis System for Brain Tumor Detection and Classification

    Ahmed A. Alsheikhy1, Ahmad S. Azzahrani1, A. Khuzaim Alzahrani2, Tawfeeq Shawly3

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 853-853, 2024, DOI:10.32604/csse.2024.051630 - 20 May 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Transformation of MRI Images to Three-Level Color Spaces for Brain Tumor Classification Using Deep-Net

    Fadl Dahan*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 381-395, 2024, DOI:10.32604/iasc.2024.047921 - 21 May 2024

    Abstract In the domain of medical imaging, the accurate detection and classification of brain tumors is very important. This study introduces an advanced method for identifying camouflaged brain tumors within images. Our proposed model consists of three steps: Feature extraction, feature fusion, and then classification. The core of this model revolves around a feature extraction framework that combines color-transformed images with deep learning techniques, using the ResNet50 Convolutional Neural Network (CNN) architecture. So the focus is to extract robust feature from MRI images, particularly emphasizing weighted average features extracted from the first convolutional layer renowned for… More >

  • Open Access

    ARTICLE

    L-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1975-1994, 2024, DOI:10.32604/cmc.2024.049228 - 15 May 2024

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is… More >

  • Open Access

    ARTICLE

    Intelligent Machine Learning Based Brain Tumor Segmentation through Multi-Layer Hybrid U-Net with CNN Feature Integration

    Sharaf J. Malebary*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1301-1317, 2024, DOI:10.32604/cmc.2024.047917 - 25 April 2024

    Abstract Brain tumors are a pressing public health concern, characterized by their high mortality and morbidity rates. Nevertheless, the manual segmentation of brain tumors remains a laborious and error-prone task, necessitating the development of more precise and efficient methodologies. To address this formidable challenge, we propose an advanced approach for segmenting brain tumor Magnetic Resonance Imaging (MRI) images that harnesses the formidable capabilities of deep learning and convolutional neural networks (CNNs). While CNN-based methods have displayed promise in the realm of brain tumor segmentation, the intricate nature of these tumors, marked by irregular shapes, varying sizes,… More >

  • Open Access

    REVIEW

    Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier

    KARAN WADHWA1, PAYAL CHAUHAN1, SHOBHIT KUMAR2, RAKESH PAHWA3,*, RAVINDER VERMA4, RAJAT GOYAL5, GOVIND SINGH1, ARCHANA SHARMA6, NEHA RAO3, DEEPAK KAUSHIK1,*

    Oncology Research, Vol.32, No.5, pp. 877-897, 2024, DOI:10.32604/or.2024.047278 - 23 April 2024

    Abstract Background: Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective: Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods: Relevant literature for this manuscript has been collected from a comprehensive More > Graphic Abstract

    Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier

Displaying 1-10 on page 1 of 71. Per Page