Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Multi Class Brain Cancer Prediction System Empowered with BRISK Descriptor

    Madona B. Sahaai*, G. R. Jothilakshmi, E. Praveen, V. Hemath Kumar

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1507-1521, 2023, DOI:10.32604/iasc.2023.032256 - 05 January 2023

    Abstract Magnetic Resonance Imaging (MRI) is one of the important resources for identifying abnormalities in the human brain. This work proposes an effective Multi-Class Classification (MCC) system using Binary Robust Invariant Scalable Keypoints (BRISK) as texture descriptors for effective classification. At first, the potential Region Of Interests (ROIs) are detected using features from the accelerated segment test algorithm. Then, non-maxima suppression is employed in scale space based on the information in the ROIs. The discriminating power of BRISK is examined using three machine learning classifiers such as k-Nearest Neighbour (kNN), Support Vector Machine (SVM) and Random Forest More >

  • Open Access

    ARTICLE

    An Automated Brain Image Analysis System for Brain Cancer using Shearlets

    R. Muthaiyan1,*, Dr M. Malleswaran2

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 299-312, 2022, DOI:10.32604/csse.2022.018034 - 26 August 2021

    Abstract In this paper, an Automated Brain Image Analysis (ABIA) system that classifies the Magnetic Resonance Imaging (MRI) of human brain is presented. The classification of MRI images into normal or low grade or high grade plays a vital role for the early diagnosis. The Non-Subsampled Shearlet Transform (NSST) that captures more visual information than conventional wavelet transforms is employed for feature extraction. As the feature space of NSST is very high, a statistical t-test is applied to select the dominant directional sub-bands at each level of NSST decomposition based on sub-band energies. A combination of… More >

Displaying 1-10 on page 1 of 2. Per Page