Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    REVIEW

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

    Hao Tan1,2, Zeai Huang1,2,*, Runxian Gong2, Junming Mei2, Kejie Wu2, Tianyu Yan2, Daoquan Zhu2, Zhibin Zhang2, Ruiyang Zhang1,2

    Energy Engineering, Vol.122, No.11, pp. 4331-4347, 2025, DOI:10.32604/ee.2025.070226 - 27 October 2025

    Abstract Under the driving goal of carbon neutrality, biogas reforming technology has garnered significant attention due to its ability to convert greenhouse gases (CH4/CO2) into syngas (H2/CO). Conventional nickel-based catalysts suffer from issues such as carbon deposition, sintering and sulfur poisoning. Non-nickel-based perovskite materials, with their tunable crystal structure, dynamic oxygen vacancy characteristics, and excellent anti-coking/anti-sulfur performance, have emerged as a promising alternative. This review systematically summarizes the design for non-nickel-based perovskite materials, including optimizing lattice oxygen migration ability and active site stability by A/B site doping, defect engineering and heterojunction construction. The enhancing the conversion rate… More > Graphic Abstract

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

  • Open Access

    ARTICLE

    Catalytic Cracking of Crude Palm Oil-Based Biorefinery to Biogasoline over γ-Al2O3: Study of Physico-Chemical Properties and Life Cycle Assessment

    Hosta Ardhyananta1,*, Widyastuti Widyastuti1, Maria Anityasari2, Sigit Tri Wicaksono1, Vania Mitha Pratiwi1, Rindang Fajarin1, Liyana Labiba Zulfa3, Komang Nickita Sari2, Ninik Safrida1, Haris Al Hamdi1

    Journal of Renewable Materials, Vol.13, No.10, pp. 1913-1934, 2025, DOI:10.32604/jrm.2025.02025-0018 - 22 October 2025

    Abstract The total replacement of old fossil fuels poses obstacles, making the production of efficient biogasoline vital. Despite its potential as an environmentally friendly fossil fuel substitute, the life cycle assessment (LCA) of palm oil-derived biogasoline remains underexplored. This study investigated the production of biogasoline from crude palm oil (CPO) based biorefinery using catalytic cracking over mesoporous γ-Al2O3 catalyst and LCA analysis. High selectivity of converting CPO into biogasoline was achieved by optimizing catalytic cracking parameters, including catalyst dose, temperature, and contact time. γ-Al2O3 and CPO were characterized by several methods to study the physical and chemical… More >

  • Open Access

    ARTICLE

    Research on Optimal Scheduling of Integrated Energy Systems with Wind-Photovoltaic-Biogas-Storage Considering Carbon Capture Systems and Power-to-Gas Coordination

    Yunfei Xu1, Jianfeng Liu1,*, Tianxing Sun1, Heran Kang1, Xiaoqing Hao2

    Energy Engineering, Vol.122, No.8, pp. 3155-3176, 2025, DOI:10.32604/ee.2025.065753 - 24 July 2025

    Abstract In order to promote the utilization level of new energy resources for local and efficient consumption, this paper introduces the biogas (BG) fermentation technology into the integrated energy system (IES). This initiative is to study the collaborative and optimal scheduling of IES with wind power (WP), photovoltaic (PV), and BG, while integrating carbon capture system (CCS) and power-to-gas (P2G) system. Firstly, the framework of collaborative operation of IES for BG-CCS-P2G is constructed. Secondly, the flexible scheduling resources of the source and load sides are fully exploited, and the collaborative operation mode of CCS-P2G is proposed… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Turbulent Diffusion Flames of a Biogas Enriched with Hydrogen

    Naima Krarraz1,*, Amina Sabeur1, Khadidja Safer2, Ahmed Ouadha1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 79-96, 2024, DOI:10.32604/fdmp.2023.026238 - 08 November 2023

    Abstract Any biogas produced by the anaerobic fermentation of organic materials has the advantage of being an environmentally friendly biofuel. Nevertheless, the relatively low calorific value of such gases makes their effective utilization in practical applications relatively difficult. The present study considers the addition of hydrogen as a potential solution to mitigate this issue. In particular, the properties of turbulent diffusion jet flames and the related pollutant emissions are investigated numerically for different operating pressures. The related numerical simulations are conducted by solving the RANS equations in the frame of the Reynolds Stress Model in combination More > Graphic Abstract

    Numerical Simulation of Turbulent Diffusion Flames of a Biogas Enriched with Hydrogen

  • Open Access

    ARTICLE

    Biodegradation of Medicinal Plants Waste in an Anaerobic Digestion Reactor for Biogas Production

    Kabir Fardad1, Bahman Najafi1, Sina Faizollahzadeh Ardabili1, Amir Mosavi2,3, Shahaboddin Shamshirband,4,5,*, Timon Rabczuk2

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 381-392, 2018, DOI:10.3970/cmc.2018.01803

    Abstract Glycyrrhiza glabra, Mint, Cuminum cyminum, Lavender and Arctium medicinal are considered as edible plants with therapeutic properties and as medicinal plants in Iran. After extraction process of medicinal plants, residual wastes are not suitable for animal feed and are considered as waste and as an environmental threat. At present there is no proper management of waste of these plants and they are burned or buried. The present study discusses the possibility of biogas production from Glycyrrhiza Glabra Waste (GGW), Mentha Waste (MW), Cuminum Cyminum Waste (CCW), Lavender Waste (LW) and Arctium Waste (AW). 250 g… More >

Displaying 1-10 on page 1 of 5. Per Page