Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Fault Diagnosis of Motor in Frequency Domain Signal by Stacked De-noising Auto-encoder

    Xiaoping Zhao1, Jiaxin Wu1,*, Yonghong Zhang2, Yunqing Shi3, Lihua Wang2

    CMC-Computers, Materials & Continua, Vol.57, No.2, pp. 223-242, 2018, DOI:10.32604/cmc.2018.02490

    Abstract With the rapid development of mechanical equipment, mechanical health monitoring field has entered the era of big data. Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities, this also brings influence to the mechanical fault diagnosis field. Therefore, according to the characteristics of motor vibration signals (nonstationary and difficult to deal with) and mechanical ‘big data’, combined with deep learning, a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed. The frequency domain signals obtained by the Fourier transform More >

Displaying 1-10 on page 1 of 1. Per Page