Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Seasonal Short-Term Load Forecasting for Power Systems Based on Modal Decomposition and Feature-Fusion Multi-Algorithm Hybrid Neural Network Model

    Jiachang Liu1,*, Zhengwei Huang2, Junfeng Xiang1, Lu Liu1, Manlin Hu1

    Energy Engineering, Vol.121, No.11, pp. 3461-3486, 2024, DOI:10.32604/ee.2024.054514 - 21 October 2024

    Abstract To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance, this paper proposes a seasonal short-term load combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model. Specifically, the characteristics of load components are analyzed for different seasons, and the corresponding models are established. First, the improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) method is employed to decompose the system load for all four seasons, and the new sequence is obtained through reconstruction based on the… More >

  • Open Access

    ARTICLE

    DeepBio: A Deep CNN and Bi-LSTM Learning for Person Identification Using Ear Biometrics

    Anshul Mahajan*, Sunil K. Singla

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1623-1649, 2024, DOI:10.32604/cmes.2024.054468 - 27 September 2024

    Abstract The identification of individuals through ear images is a prominent area of study in the biometric sector. Facial recognition systems have faced challenges during the COVID-19 pandemic due to mask-wearing, prompting the exploration of supplementary biometric measures such as ear biometrics. The research proposes a Deep Learning (DL) framework, termed DeepBio, using ear biometrics for human identification. It employs two DL models and five datasets, including IIT Delhi (IITD-I and IITD-II), annotated web images (AWI), mathematical analysis of images (AMI), and EARVN1. Data augmentation techniques such as flipping, translation, and Gaussian noise are applied to More >

  • Open Access

    ARTICLE

    Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images

    Prasanalakshmi Balaji1,*, Omar Alqahtani1, Sangita Babu2, Mousmi Ajay Chaurasia3, Shanmugapriya Prakasam4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 443-458, 2024, DOI:10.32604/cmes.2024.053158 - 20 August 2024

    Abstract Breast cancer is a significant threat to the global population, affecting not only women but also a threat to the entire population. With recent advancements in digital pathology, Eosin and hematoxylin images provide enhanced clarity in examining microscopic features of breast tissues based on their staining properties. Early cancer detection facilitates the quickening of the therapeutic process, thereby increasing survival rates. The analysis made by medical professionals, especially pathologists, is time-consuming and challenging, and there arises a need for automated breast cancer detection systems. The upcoming artificial intelligence platforms, especially deep learning models, play an More >

  • Open Access

    ARTICLE

    A New Industrial Intrusion Detection Method Based on CNN-BiLSTM

    Jun Wang, Changfu Si, Zhen Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4297-4318, 2024, DOI:10.32604/cmc.2024.050223 - 20 June 2024

    Abstract Nowadays, with the rapid development of industrial Internet technology, on the one hand, advanced industrial control systems (ICS) have improved industrial production efficiency. However, there are more and more cyber-attacks targeting industrial control systems. To ensure the security of industrial networks, intrusion detection systems have been widely used in industrial control systems, and deep neural networks have always been an effective method for identifying cyber attacks. Current intrusion detection methods still suffer from low accuracy and a high false alarm rate. Therefore, it is important to build a more efficient intrusion detection model. This paper… More >

  • Open Access

    ARTICLE

    A Time Series Intrusion Detection Method Based on SSAE, TCN and Bi-LSTM

    Zhenxiang He*, Xunxi Wang, Chunwei Li

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 845-871, 2024, DOI:10.32604/cmc.2023.046607 - 30 January 2024

    Abstract In the fast-evolving landscape of digital networks, the incidence of network intrusions has escalated alarmingly. Simultaneously, the crucial role of time series data in intrusion detection remains largely underappreciated, with most systems failing to capture the time-bound nuances of network traffic. This leads to compromised detection accuracy and overlooked temporal patterns. Addressing this gap, we introduce a novel SSAE-TCN-BiLSTM (STL) model that integrates time series analysis, significantly enhancing detection capabilities. Our approach reduces feature dimensionality with a Stacked Sparse Autoencoder (SSAE) and extracts temporally relevant features through a Temporal Convolutional Network (TCN) and Bidirectional Long… More >

  • Open Access

    ARTICLE

    Analyzing Arabic Twitter-Based Patient Experience Sentiments Using Multi-Dialect Arabic Bidirectional Encoder Representations from Transformers

    Sarab AlMuhaideb*, Yasmeen AlNegheimish, Taif AlOmar, Reem AlSabti, Maha AlKathery, Ghala AlOlyyan

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 195-220, 2023, DOI:10.32604/cmc.2023.038368 - 08 June 2023

    Abstract Healthcare organizations rely on patients’ feedback and experiences to evaluate their performance and services, thereby allowing such organizations to improve inadequate services and address any shortcomings. According to the literature, social networks and particularly Twitter are effective platforms for gathering public opinions. Moreover, recent studies have used natural language processing to measure sentiments in text segments collected from Twitter to capture public opinions about various sectors, including healthcare. The present study aimed to analyze Arabic Twitter-based patient experience sentiments and to introduce an Arabic patient experience corpus. The authors collected 12,400 tweets from Arabic patients… More >

  • Open Access

    ARTICLE

    Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed

    Neelam Mughees1,2, Mujtaba Hussain Jaffery1, Abdullah Mughees3, Anam Mughees4, Krzysztof Ejsmont5,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6375-6393, 2023, DOI:10.32604/cmc.2023.038564 - 29 April 2023

    Abstract Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked,… More >

  • Open Access

    ARTICLE

    Detection of Abnormal Network Traffic Using Bidirectional Long Short-Term Memory

    Nga Nguyen Thi Thanh, Quang H. Nguyen*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 491-504, 2023, DOI:10.32604/csse.2023.032107 - 20 January 2023

    Abstract Nowadays, web systems and servers are constantly at great risk from cyberattacks. This paper proposes a novel approach to detecting abnormal network traffic using a bidirectional long short-term memory (LSTM) network in combination with the ensemble learning technique. First, the binary classification module was used to detect the current abnormal flow. Then, the abnormal flows were fed into the multilayer classification module to identify the specific type of flow. In this research, a deep learning bidirectional LSTM model, in combination with the convolutional neural network and attention technique, was deployed to identify a specific attack. More >

  • Open Access

    ARTICLE

    Intrusion Detection Based on Bidirectional Long Short-Term Memory with Attention Mechanism

    Yongjie Yang1, Shanshan Tu1, Raja Hashim Ali2, Hisham Alasmary3,4, Muhammad Waqas5,6,*, Muhammad Nouman Amjad7

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 801-815, 2023, DOI:10.32604/cmc.2023.031907 - 22 September 2022

    Abstract With the recent developments in the Internet of Things (IoT), the amount of data collected has expanded tremendously, resulting in a higher demand for data storage, computational capacity, and real-time processing capabilities. Cloud computing has traditionally played an important role in establishing IoT. However, fog computing has recently emerged as a new field complementing cloud computing due to its enhanced mobility, location awareness, heterogeneity, scalability, low latency, and geographic distribution. However, IoT networks are vulnerable to unwanted assaults because of their open and shared nature. As a result, various fog computing-based security models that protect… More >

  • Open Access

    ARTICLE

    Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network

    Qi Guo, Shujun Zhang*, Hui Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1653-1670, 2023, DOI:10.32604/cmes.2022.021784 - 20 September 2022

    Abstract Continuous sign language recognition (CSLR) is challenging due to the complexity of video background, hand gesture variability, and temporal modeling difficulties. This work proposes a CSLR method based on a spatial-temporal graph attention network to focus on essential features of video series. The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatial-temporal graph to reflect inter-frame relevance and physical connections between nodes. The graph-based multi-head attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration, and short-term motion correlation modeling More > Graphic Abstract

    Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network

Displaying 1-10 on page 1 of 11. Per Page