Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    CLF-YOLOv8: Lightweight Multi-Scale Fusion with Focal Geometric Loss for Real-Time Night Maritime Detection

    Zhonghao Wang1,2, Xin Liu1,2,*, Changhua Yue3, Haiwen Yuan4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071813 - 09 December 2025

    Abstract To address critical challenges in nighttime ship detection—high small-target missed detection (over 20%), insufficient lightweighting, and limited generalization due to scarce, low-quality datasets—this study proposes a systematic solution. First, a high-quality Night-Ships dataset is constructed via CycleGAN-based day-night transfer, combined with a dual-threshold cleaning strategy (Laplacian variance sharpness filtering and brightness-color deviation screening). Second, a Cross-stage Lightweight Fusion-You Only Look Once version 8 (CLF-YOLOv8) is proposed with key improvements: the Neck network is reconstructed by replacing Cross Stage Partial (CSP) structure with the Cross Stage Partial Multi-Scale Convolutional Block (CSP-MSCB) and integrating Bidirectional Feature Pyramid More >

  • Open Access

    ARTICLE

    MEB-YOLO: An Efficient Vehicle Detection Method in Complex Traffic Road Scenes

    Yingkun Song1, Shunhe Hong1, Chentao Hu1, Pingan He2, Lingbing Tao1, Zhixin Tie1,3,*, Chengfu Ding4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5761-5784, 2023, DOI:10.32604/cmc.2023.038910 - 29 April 2023

    Abstract Rapid and precise vehicle recognition and classification are essential for intelligent transportation systems, and road target detection is one of the most difficult tasks in the field of computer vision. The challenge in real-time road target detection is the ability to properly pinpoint relatively small vehicles in complicated environments. However, because road targets are prone to complicated backgrounds and sparse features, it is challenging to detect and identify vehicle kinds fast and reliably. We suggest a new vehicle detection model called MEB-YOLO, which combines Mosaic and MixUp data augmentation, Efficient Channel Attention (ECA) attention mechanism,… More >

Displaying 1-10 on page 1 of 2. Per Page