Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer

    Shengdong Cheng1, Juncheng Gao1,*, Hongning Qi2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 871-892, 2024, DOI:10.32604/cmes.2024.052830 - 20 August 2024

    Abstract Driven piles are used in many geological environments as a practical and convenient structural component. Hence, the determination of the drivability of piles is actually of great importance in complex geotechnical applications. Conventional methods of predicting pile drivability often rely on simplified physical models or empirical formulas, which may lack accuracy or applicability in complex geological conditions. Therefore, this study presents a practical machine learning approach, namely a Random Forest (RF) optimized by Bayesian Optimization (BO) and Particle Swarm Optimization (PSO), which not only enhances prediction accuracy but also better adapts to varying geological environments… More > Graphic Abstract

    Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer

  • Open Access

    ARTICLE

    A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples

    Miao Li, Fanyong Cheng*, Jiong Yang, Maxwell Mensah Duodu, Hao Tu

    Energy Engineering, Vol.121, No.9, pp. 2543-2568, 2024, DOI:10.32604/ee.2024.051231 - 19 August 2024

    Abstract Accurate and reliable fault detection is essential for the safe operation of electric vehicles. Support vector data description (SVDD) has been widely used in the field of fault detection. However, constructing the hypersphere boundary only describes the distribution of unlabeled samples, while the distribution of faulty samples cannot be effectively described and easily misses detecting faulty data due to the imbalance of sample distribution. Meanwhile, selecting parameters is critical to the detection performance, and empirical parameterization is generally time-consuming and laborious and may not result in finding the optimal parameters. Therefore, this paper proposes a… More >

  • Open Access

    ARTICLE

    Research on Freezing of Gait Recognition Method Based on Variational Mode Decomposition

    Shoutao Li1,2,*, Ruyi Qu1, Yu Zhang1, Dingli Yu3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2809-2823, 2023, DOI:10.32604/iasc.2023.036999 - 11 September 2023

    Abstract Freezing of Gait (FOG) is the most common and disabling gait disorder in patients with Parkinson’s Disease (PD), which seriously affects the life quality and social function of patients. This paper proposes a FOG recognition method based on the Variational Mode Decomposition (VMD). Firstly, VMD instead of the traditional time-frequency analysis method to complete adaptive decomposition to the FOG signal. Secondly, to improve the accuracy and speed of the recognition algorithm, use the CART model as the base classifier and perform the feature dimension reduction. Then use the RUSBoost ensemble algorithm to solve the problem… More >

  • Open Access

    ARTICLE

    Dendritic Cell Algorithm with Bayesian Optimization Hyperband for Signal Fusion

    Dan Zhang1, Yu Zhang2, Yiwen Liang1,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2317-2336, 2023, DOI:10.32604/cmc.2023.038026 - 30 August 2023

    Abstract The dendritic cell algorithm (DCA) is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system. Too many parameters increase complexity and lead to plenty of criticism in the signal fusion procedure of DCA. The loss function of DCA is ambiguous due to its complexity. To reduce the uncertainty, several researchers simplified the algorithm program; some introduced gradient descent to optimize parameters; some utilized searching methods to find the optimal parameter combination. However, these studies are either time-consuming or need to be revised in the case of non-convex… More >

  • Open Access

    ARTICLE

    Type 2 Diabetes Risk Prediction Using Deep Convolutional Neural Network Based-Bayesian Optimization

    Alawi Alqushaibi1,2,*, Mohd Hilmi Hasan1,2, Said Jadid Abdulkadir1,2, Amgad Muneer1,2, Mohammed Gamal1,2, Qasem Al-Tashi3, Shakirah Mohd Taib1,2, Hitham Alhussian1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3223-3238, 2023, DOI:10.32604/cmc.2023.035655 - 31 March 2023

    Abstract Diabetes mellitus is a long-term condition characterized by hyperglycemia. It could lead to plenty of difficulties. According to rising morbidity in recent years, the world’s diabetic patients will exceed 642 million by 2040, implying that one out of every ten persons will be diabetic. There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’ lives. Due to its rapid development, deep learning (DL) was used to predict numerous diseases. However, DL methods still suffer from their limited prediction… More >

  • Open Access

    ARTICLE

    Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning

    Fadwa Alrowais1, Radwa Marzouk2,3, Fahd N. Al-Wesabi4,*, Anwer Mustafa Hilal5

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3325-3342, 2023, DOI:10.32604/iasc.2023.036354 - 15 March 2023

    Abstract Sign language recognition can be treated as one of the efficient solutions for disabled people to communicate with others. It helps them to convey the required data by the use of sign language with no issues. The latest developments in computer vision and image processing techniques can be accurately utilized for the sign recognition process by disabled people. American Sign Language (ASL) detection was challenging because of the enhancing intraclass similarity and higher complexity. This article develops a new Bayesian Optimization with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication (BODL-HGRSLC) for Disabled People.… More >

  • Open Access

    ARTICLE

    Breast Cancer Diagnosis Using Feature Selection Approaches and Bayesian Optimization

    Erkan Akkur1, Fuat TURK2,*, Osman Erogul1

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1017-1031, 2023, DOI:10.32604/csse.2023.033003 - 03 November 2022

    Abstract Breast cancer seriously affects many women. If breast cancer is detected at an early stage, it may be cured. This paper proposes a novel classification model based improved machine learning algorithms for diagnosis of breast cancer at its initial stage. It has been used by combining feature selection and Bayesian optimization approaches to build improved machine learning models. Support Vector Machine, K-Nearest Neighbor, Naive Bayes, Ensemble Learning and Decision Tree approaches were used as machine learning algorithms. All experiments were tested on two different datasets, which are Wisconsin Breast Cancer Dataset (WBCD) and Mammographic Breast… More >

  • Open Access

    ARTICLE

    Ensembles of Deep Learning Framework for Stomach Abnormalities Classification

    Talha Saeed, Chu Kiong Loo*, Muhammad Shahreeza Safiruz Kassim

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4357-4372, 2022, DOI:10.32604/cmc.2022.019076 - 11 October 2021

    Abstract

    Abnormalities of the gastrointestinal tract are widespread worldwide today. Generally, an effective way to diagnose these life-threatening diseases is based on endoscopy, which comprises a vast number of images. However, the main challenge in this area is that the process is time-consuming and fatiguing for a gastroenterologist to examine every image in the set. Thus, this led to the rise of studies on designing AI-based systems to assist physicians in the diagnosis. In several medical imaging tasks, deep learning methods, especially convolutional neural networks (CNNs), have contributed to the state-of-the-art outcomes, where the complicated nonlinear relation

    More >

  • Open Access

    ARTICLE

    A New Random Forest Applied to Heavy Metal Risk Assessment

    Ziyan Yu1, Cong Zhang1,*, Naixue Xiong2, Fang Chen1

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 207-221, 2022, DOI:10.32604/csse.2022.018301 - 26 August 2021

    Abstract As soil heavy metal pollution is increasing year by year, the risk assessment of soil heavy metal pollution is gradually gaining attention. Soil heavy metal datasets are usually imbalanced datasets in which most of the samples are safe samples that are not contaminated with heavy metals. Random Forest (RF) has strong generalization ability and is not easy to overfit. In this paper, we improve the Bagging algorithm and simple voting method of RF. A W-RF algorithm based on adaptive Bagging and weighted voting is proposed to improve the classification performance of RF on imbalanced datasets.… More >

  • Open Access

    ARTICLE

    Forecast of LSTM-XGBoost in Stock Price Based on Bayesian Optimization

    Tian Liwei1,2,*, Feng Li1, Sun Yu3, Guo Yuankai4

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 855-868, 2021, DOI:10.32604/iasc.2021.016805 - 01 July 2021

    Abstract The prediction of the “ups and downs” of stock market prices is one of the important undertakings of the financial market. Since accurate prediction helps foster considerable economic benefits, stock market prediction has attracted significant interest by both investors and researchers. Efforts into building an accurate, stable and effective model to predict stock prices’ movements have been proliferating at a fast pace, to meet such a challenge. Firstly, this paper uses a correlation analysis to analyze the attributes of a stock dataset, processing missing values, determining the data attributes to be retained data, then divide… More >

Displaying 1-10 on page 1 of 11. Per Page