Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks: An Empirical Study

    Shahad Alzahrani1, Hatim Alsuwat2, Emad Alsuwat3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1635-1654, 2024, DOI:10.32604/cmes.2023.044718 - 29 January 2024

    Abstract Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables. However, the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams. One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks, wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance. In this research paper, we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms. Our framework… More >

  • Open Access

    REVIEW

    A Survey on Acute Leukemia Expression Data Classification Using Ensembles

    Abdel Nasser H. Zaied1, Ehab Rushdy2, Mona Gamal3,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1349-1364, 2023, DOI:10.32604/csse.2023.033596 - 28 July 2023

    Abstract Acute leukemia is an aggressive disease that has high mortality rates worldwide. The error rate can be as high as 40% when classifying acute leukemia into its subtypes. So, there is an urgent need to support hematologists during the classification process. More than two decades ago, researchers used microarray gene expression data to classify cancer and adopted acute leukemia as a test case. The high classification accuracy they achieved confirmed that it is possible to classify cancer subtypes using microarray gene expression data. Ensemble machine learning is an effective method that combines individual classifiers to… More >

  • Open Access

    ARTICLE

    Mean Opinion Score Estimation for Mobile Broadband Networks Using Bayesian Networks

    Ayman A. El-Saleh1, Abdulraqeb Alhammadi2,*, Ibraheem Shayea3, Azizul Azizan4, Wan Haslina Hassan2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4571-4587, 2022, DOI:10.32604/cmc.2022.024642 - 21 April 2022

    Abstract Mobile broadband (MBB) networks are expanding rapidly to deliver higher data speeds. The fifth-generation cellular network promises enhanced-MBB with high-speed data rates, low power connectivity, and ultra-low latency video streaming. However, existing cellular networks are unable to perform well due to high latency and low bandwidth, which degrades the performance of various applications. As a result, monitoring and evaluation of the performance of these network-supported services is critical. Mobile network providers optimize and monitor their network performance to ensure the highest quality of service to their end-users. This paper proposes a Bayesian model to estimate More >

  • Open Access

    ARTICLE

    Reliability Modeling and Evaluation of Complex Multi-State System Based on Bayesian Networks Considering Fuzzy Dynamic of Faults

    Fangjun Zuo*, Meiwei Jia, Guang Wen, Huijie Zhang, Pingping Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 993-1012, 2021, DOI:10.32604/cmes.2021.016870 - 08 October 2021

    Abstract In the traditional reliability evaluation based on the Bayesian method, the failure probability of nodes is usually expressed by the average failure rate within a period of time. Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods, this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness. The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function. Based on the solving characteristics of the dynamic fuzzy set and Bayesian network, the fuzzy dynamic probability and fuzzy dynamic importance degree of the More >

  • Open Access

    ARTICLE

    A Recommendation Approach Based on Bayesian Networks for Clone Refactor

    Ye Zhai1, *, Dongsheng Liu1, Celimuge Wu2, Rongrong She1

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1999-2012, 2020, DOI:10.32604/cmc.2020.09950 - 30 June 2020

    Abstract Reusing code fragments by copying and pasting them with or without minor adaptation is a common activity in software development. As a result, software systems often contain sections of code that are very similar, called code clones. Code clones are beneficial in reducing software development costs and development risks. However, recent studies have indicated some negative impacts as a result. In order to effectively manage and utilize the clones, we design an approach for recommending refactoring clones based on a Bayesian network. Firstly, clone codes are detected from the source code. Secondly, the clones that More >

  • Open Access

    ARTICLE

    A Novel Probabilistic Hybrid Model to Detect Anomaly in Smart Homes

    Sasan Saqaeeyan1, Hamid Haj Seyyed Javadi1,2,*, Hossein Amirkhani1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.3, pp. 815-834, 2019, DOI:10.32604/cmes.2019.07848

    Abstract Anomaly detection in smart homes provides support to enhance the health and safety of people who live alone. Compared to the previous studies done on this topic, less attention has been given to hybrid methods. This paper presents a two-steps hybrid probabilistic anomaly detection model in the smart home. First, it employs various algorithms with different characteristics to detect anomalies from sensory data. Then, it aggregates their results using a Bayesian network. In this Bayesian network, abnormal events are detected through calculating the probability of abnormality given anomaly detection results of base methods. Experimental evaluation More >

  • Open Access

    ARTICLE

    Uncertain Knowledge Reasoning Based on the Fuzzy Multi Entity Bayesian Networks

    Dun Li1, Hong Wu1, Jinzhu Gao2, Zhuoyun Liu1, Lun Li1, Zhiyun Zheng1,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 301-321, 2019, DOI:10.32604/cmc.2019.05953

    Abstract With the rapid development of the semantic web and the ever-growing size of uncertain data, representing and reasoning uncertain information has become a great challenge for the semantic web application developers. In this paper, we present a novel reasoning framework based on the representation of fuzzy PR-OWL. Firstly, the paper gives an overview of the previous research work on uncertainty knowledge representation and reasoning, incorporates Ontology into the fuzzy Multi Entity Bayesian Networks theory, and introduces fuzzy PR-OWL, an Ontology language based on OWL2. Fuzzy PR-OWL describes fuzzy semantics and uncertain relations and gives grammatical… More >

  • Open Access

    ARTICLE

    Multi-Label Learning Based on Transfer Learning and Label Correlation

    Kehua Yang1,*, Chaowei She1, Wei Zhang1, Jiqing Yao2, Shaosong Long1

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 155-169, 2019, DOI:10.32604/cmc.2019.05901

    Abstract In recent years, multi-label learning has received a lot of attention. However, most of the existing methods only consider global label correlation or local label correlation. In fact, on the one hand, both global and local label correlations can appear in real-world situation at same time. On the other hand, we should not be limited to pairwise labels while ignoring the high-order label correlation. In this paper, we propose a novel and effective method called GLLCBN for multi-label learning. Firstly, we obtain the global label correlation by exploiting label semantic similarity. Then, we analyze the… More >

Displaying 1-10 on page 1 of 8. Per Page