Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    BFS-SVM Classifier for QoS and Resource Allocation in Cloud Environment

    A. Richard William1,*, J. Senthilkumar2, Y. Suresh2, V. Mohanraj2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 777-790, 2023, DOI:10.32604/csse.2023.031753 - 26 May 2023

    Abstract In cloud computing Resource allocation is a very complex task. Handling the customer demand makes the challenges of on-demand resource allocation. Many challenges are faced by conventional methods for resource allocation in order to meet the Quality of Service (QoS) requirements of users. For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work. The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with… More >

  • Open Access

    ARTICLE

    Gender Identification Using Marginalised Stacked Denoising Autoencoders on Twitter Data

    Badriyya B. Al-onazi1, Mohamed K. Nour2, Hassan Alshamrani3, Mesfer Al Duhayyim4,*, Heba Mohsen5, Amgad Atta Abdelmageed6, Gouse Pasha Mohammed6, Abu Sarwar Zamani6

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2529-2544, 2023, DOI:10.32604/iasc.2023.034623 - 15 March 2023

    Abstract Gender analysis of Twitter could reveal significant socio-cultural differences between female and male users. Efforts had been made to analyze and automatically infer gender formerly for more commonly spoken languages’ content, but, as we now know that limited work is being undertaken for Arabic. Most of the research works are done mainly for English and least amount of effort for non-English language. The study for Arabic demographic inference like gender is relatively uncommon for social networking users, especially for Twitter. Therefore, this study aims to design an optimal marginalized stacked denoising autoencoder for gender identification… More >

  • Open Access

    ARTICLE

    Hybridizing Artificial Bee Colony with Bat Algorithm for Web Service Composition

    Tariq Ahamed Ahanger1,*, Fadl Dahan2,3, Usman Tariq1

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2429-2445, 2023, DOI:10.32604/csse.2023.037692 - 09 February 2023

    Abstract In the Internet of Things (IoT), the users have complex needs, and the Web Service Composition (WSC) was introduced to address these needs. The WSC’s main objective is to search for the optimal combination of web services in response to the user needs and the level of Quality of Services (QoS) constraints. The challenge of this problem is the huge number of web services that achieve similar functionality with different levels of QoS constraints. In this paper, we introduce an extension of our previous works on the Artificial Bee Colony (ABC) and Bat Algorithm (BA).… More >

  • Open Access

    ARTICLE

    Technique for Multi-Pass Turning Optimization Based on Gaussian Quantum-Behaved Bat Algorithm

    Shutong Xie, Zongbao He, Xingwang Huang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1575-1602, 2023, DOI:10.32604/cmes.2023.025812 - 06 February 2023

    Abstract The multi-pass turning operation is one of the most commonly used machining methods in manufacturing field. The main objective of this operation is to minimize the unit production cost. This paper proposes a Gaussian quantum-behaved bat algorithm (GQBA) to solve the problem of multi-pass turning operation. The proposed algorithm mainly includes the following two improvements. The first improvement is to incorporate the current optimal positions of quantum bats and the global best position into the stochastic attractor to facilitate population diversification. The second improvement is to use a Gaussian distribution instead of the uniform distribution… More >

  • Open Access

    ARTICLE

    The Human Eye Pupil Detection System Using BAT Optimized Deep Learning Architecture

    S. Navaneethan1,*, P. Siva Satya Sreedhar2, S. Padmakala3, C. Senthilkumar4

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 125-135, 2023, DOI:10.32604/csse.2023.034546 - 20 January 2023

    Abstract The pupil recognition method is helpful in many real-time systems, including ophthalmology testing devices, wheelchair assistance, and so on. The pupil detection system is a very difficult process in a wide range of datasets due to problems caused by varying pupil size, occlusion of eyelids, and eyelashes. Deep Convolutional Neural Networks (DCNN) are being used in pupil recognition systems and have shown promising results in terms of accuracy. To improve accuracy and cope with larger datasets, this research work proposes BOC (BAT Optimized CNN)-IrisNet, which consists of optimizing input weights and hidden layers of DCNN… More >

  • Open Access

    ARTICLE

    Bayes-Q-Learning Algorithm in Edge Computing for Waste Tracking

    D. Palanikkumar1, R. Ramesh Kumar2, Mehedi Masud3, Mrim M. Alnfiai4, Mohamed Abouhawwash5,6,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2425-2440, 2023, DOI:10.32604/iasc.2023.033879 - 05 January 2023

    Abstract The major environmental hazard in this pandemic is the unhygienic disposal of medical waste. Medical wastage is not properly managed it will become a hazard to the environment and humans. Managing medical wastage is a major issue in the city, municipalities in the aspects of the environment, and logistics. An efficient supply chain with edge computing technology is used in managing medical waste. The supply chain operations include processing of waste collection, transportation, and disposal of waste. Many research works have been applied to improve the management of wastage. The main issues in the existing… More >

  • Open Access

    ARTICLE

    Neighborhood Search Based Improved Bat Algorithm for Web Service Composition

    Fadl Dahan1,2,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1343-1356, 2023, DOI:10.32604/csse.2023.031142 - 03 November 2022

    Abstract Web services are provided as reusable software components in the services-oriented architecture. More complicated composite services can be combined from these components to satisfy the user requirements represented as a workflow with specified Quality of Service (QoS) limitations. The workflow consists of tasks where many services can be considered for each task. Searching for optimal services combination and optimizing the overall QoS limitations is a Non-deterministic Polynomial (NP)-hard problem. This work focuses on the Web Service Composition (WSC) problem and proposes a new service composition algorithm based on the micro-bats behavior while hunting the prey.… More >

  • Open Access

    ARTICLE

    Spotted Hyena-Bat Optimized Extreme Learning Machine for Solar Power Extraction

    K. Madumathi1,*, S. Chandrasekar2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1821-1836, 2023, DOI:10.32604/csse.2023.029561 - 03 November 2022

    Abstract Artificial intelligence, machine learning and deep learning algorithms have been widely used for Maximum Power Point Tracking (MPPT) in solar systems. In the traditional MPPT strategies, following of worldwide Global Maximum Power Point (GMPP) under incomplete concealing conditions stay overwhelming assignment and tracks different nearby greatest power focuses under halfway concealing conditions. The advent of artificial intelligence in MPPT has guaranteed of accurate following of GMPP while expanding the significant performance and efficiency of MPPT under Partial Shading Conditions (PSC). Still the selection of an efficient learning based MPPT is complex because each model has… More >

  • Open Access

    ARTICLE

    Improved Bat Algorithm with Deep Learning-Based Biomedical ECG Signal Classification Model

    Marwa Obayya1, Nadhem NEMRI2, Lubna A. Alharbi3, Mohamed K. Nour4, Mrim M. Alnfiai5, Mohammed Abdullah Al-Hagery6, Nermin M. Salem7, Mesfer Al Duhayyim8,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3151-3166, 2023, DOI:10.32604/cmc.2023.032765 - 31 October 2022

    Abstract With new developments experienced in Internet of Things (IoT), wearable, and sensing technology, the value of healthcare services has enhanced. This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare. Bio-medical Electrocardiogram (ECG) signals are generally utilized in examination and diagnosis of Cardiovascular Diseases (CVDs) since it is quick and non-invasive in nature. Due to increasing number of patients in recent years, the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients. In such scenario computer-assisted automated diagnostic tools are important for classification of… More >

  • Open Access

    ARTICLE

    RBEBT: A ResNet-Based BA-ELM for Brain Tumor Classification

    Ziquan Zhu1, Muhammad Attique Khan2, Shui-Hua Wang1, Yu-Dong Zhang1,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 101-111, 2023, DOI:10.32604/cmc.2023.030790 - 22 September 2022

    Abstract Brain tumor refers to the formation of abnormal cells in the brain. It can be divided into benign and malignant. The main diagnostic methods for brain tumors are plain X-ray film, Magnetic resonance imaging (MRI), and so on. However, these artificial diagnosis methods are easily affected by external factors. Scholars have made such impressive progress in brain tumors classification by using convolutional neural network (CNN). However, there are still some problems: (i) There are many parameters in CNN, which require much calculation. (ii) The brain tumor data sets are relatively small, which may lead to… More >

Displaying 1-10 on page 1 of 23. Per Page